5 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Overexpression of Apoptotic Cell Removal Receptor MERTK in Alveolar Macrophages of Cigarette Smokers

    No full text
    Mononuclear phagocytes play an important role in the removal of apoptotic cells by expressing cell surface receptors that recognize and remove apoptotic cells. Based on the knowledge that cigarette smoking is associated with increased lung cell turnover, we hypothesized that alveolar macrophages (AMs) of normal cigarette smokers may exhibit enhanced expression of apoptotic cell removal receptor genes. AMs obtained by bronchoalveolar lavage of normal nonsmokers (n = 11) and phenotypic normal smokers (n = 13; 36 ± 6 pack-years) were screened for mRNA expression of all known apoptotic cell removal receptors using Affymetrix HG-U133 Plus 2.0 microarray chips with TaqMan RT-PCR confirmation. Of the 14 known apoptotic receptors expressed, only MER tyrosine kinase (MERTK), a transmembrane tyrosine kinase receptor, was significantly up-regulated in smokers. MERTK expression was then assessed in AMs of smokers versus nonsmokers by TaqMan RT-PCR, immunocytochemistry, Western analysis, and flow analysis. Smoker AMs had up-regulation of MERTK mRNA levels (smoker vs. nonsmoker: 3.6-fold by microarray, P < 0.003; 9.5-fold by TaqMan RT-PCR, P < 0.02). Immunocytochemistry demonstrated a qualitative increase in MERTK protein expression on AMs of smokers. Increased protein expression of MERTK on AMs of smokers was confirmed by Western and flow analyses (P < 0.007 and P < 0.0002, respectively). MERTK, a cell surface receptor that recognizes apoptotic cells, is expressed on human AMs, and its expression is up-regulated in AMs of cigarette smokers. This up-regulation of MERTK may reflect an increased demand for removal of apoptotic cells in smokers, an observation with implications for the development of chronic obstructive pulmonary disease, a disorder associated with dysregulated apoptosis of lung parenchymal cells
    corecore