211 research outputs found
Short- and long-lasting tinnitus relief induced by transcranial direct current stimulation
A significant proportion of the population suffers from tinnitus, a bothersome auditory phantom perception that can severely alter the quality of life. Numerous experimental studies suggests that a maladaptive plasticity of the auditory and limbic cortical areas may underlie tinnitus. Accordingly, repetitive transcranial magnetic stimulation (rTMS) has been repeatedly used with success to reduce tinnitus intensity. The potential of transcranial direct current stimulation (tDCS), another promising method of noninvasive brain stimulation, to relieve tinnitus has not been explored systematically. In a double-blind, placebo-controlled and balanced order design, 20 patients suffering from chronic untreatable tinnitus were submitted to 20 minutes of 1 mA anodal, cathodal and sham tDCS targeting the left temporoparietal area. The primary outcome measure was a change in tinnitus intensity or discomfort assessed with a Visual Analogic Scale (VAS) change-scale immediately after tDCS and 1 hour later. Compared to sham tDCS, anodal tDCS significantly reduced tinnitus intensity immediately after stimulation; whereas cathodal tDCS failed to do so. The variances of the tinnitus intensity and discomfort VAS change-scales increased dramatically after anodal and cathodal tDCS, whereas they remained virtually unchanged after sham tDCS. Moreover, several patients unexpectedly reported longer-lasting effects (at least several days) such as tinnitus improvement, worsening, or changes in tinnitus features, more frequently after real than sham tDCS. Anodal tDCS is a promising therapeutic tool for modulating tinnitus perception. Moreover, both anodal and cathodal tDCS seem able to alter tinnitus perception and could, thus, be used to trigger plastic changes
Why Give Birth in Health Facility? Users' and Providers' Accounts of Poor Quality of Birth Care in Tanzania.
In Tanzania, half of all pregnant women access a health facility for delivery. The proportion receiving skilled care at birth is even lower. In order to reduce maternal mortality and morbidity, the government has set out to increase health facility deliveries by skilled care. The aim of this study was to describe the weaknesses in the provision of acceptable and adequate quality care through the accounts of women who have suffered obstetric fistula, nurse-midwives at both BEmOC and CEmOC health facilities and local community members. Semi-structured interviews involving 16 women affected by obstetric fistula and five nurse-midwives at maternity wards at both BEmOC and CEmOC health facilities, and Focus Group Discussions with husbands and community members were conducted between October 2008 and February 2010 at Comprehensive Community Based Rehabilitation in Tanzania and Temeke hospitals in Dar es Salaam, and Mpwapwa district in Dodoma region. Health care users and health providers experienced poor quality caring and working environments in the health facilities. Women in labour lacked support, experienced neglect, as well as physical and verbal abuse. Nurse-midwives lacked supportive supervision, supplies and also seemed to lack motivation. There was a consensus among women who have suffered serious birth injuries and nurse midwives staffing both BEmOC and CEmOC maternity wards that the quality of care offered to women in birth was inadequate. While the birth accounts of women pointed to failure of care, the nurses described a situation of disempowerment. The bad birth care experiences of women undermine the reputation of the health care system, lower community expectations of facility birth, and sustain high rates of home deliveries. The only way to increase the rate of skilled attendance at birth in the current Tanzanian context is to make facility birth a safer alternative than home birth. The findings from this study indicate that there is a long way to go
Temporomandibular Joint Disorder Complaints in Tinnitus: Further Hints for a Putative Tinnitus Subtype
OBJECTIVE: Tinnitus is considered to be highly heterogeneous with respect to its etiology, its comorbidities and the response to specific interventions. Subtyping is recommended, but it remains to be determined which criteria are useful, since it has not yet been clearly demonstrated whether and to which extent etiologic factors, comorbid states and interventional response are related to each other and are thus applicable for subtyping tinnitus. Analyzing the Tinnitus Research Initiative Database we differentiated patients according to presence or absence of comorbid temporomandibular joint (TMJ) disorder complaints and compared the two groups with respect to etiologic factors.
METHODS: 1204 Tinnitus patients from the Tinnitus Research Initiative (TRI) Database with and without subjective TMJ complaints were compared with respect to demographic, tinnitus and audiological characteristics, questionnaires, and numeric ratings. Data were analysed according to a predefined statistical analysis plan.
RESULTS: Tinnitus patients with TMJ complaints (22% of the whole group) were significantly younger, had a lower age at tinnitus onset, and were more frequently female. They could modulate or mask their tinnitus more frequently by somatic maneuvers and by music or sound stimulation. Groups did not significantly differ for tinnitus duration, type of onset (gradual/abrupt), onset related events (whiplash etc.), character (pulsatile or not), hyperacusis, hearing impairment, tinnitus distress, depression, quality of life and subjective ratings (loudness etc.).
CONCLUSION: Replicating previous work in tinnitus patients with TMJ complaints, classical risk factors for tinnitus like older age and male gender are less relevant in tinnitus patients with TMJ complaints. By demonstrating group differences for modulation of tinnitus by movements and sounds our data further support the notion that tinnitus with TMJ complaints represents a subgroup of tinnitus with clinical features that are highly relevant for specific therapeutic management
The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea
Seagrasses colonized the sea(1) on at least three independent occasions to form the basis of one of the most productive and widespread coastal ecosystems on the planet(2). Here we report the genome of Zostera marina (L.), the first, to our knowledge, marine angiosperm to be fully sequenced. This reveals unique insights into the genomic losses and gains involved in achieving the structural and physiological adaptations required for its marine lifestyle, arguably the most severe habitat shift ever accomplished by flowering plants. Key angiosperm innovations that were lost include the entire repertoire of stomatal genes(3), genes involved in the synthesis of terpenoids and ethylene signalling, and genes for ultraviolet protection and phytochromes for far-red sensing. Seagrasses have also regained functions enabling them to adjust to full salinity. Their cell walls contain all of the polysaccharides typical of land plants, but also contain polyanionic, low-methylated pectins and sulfated galactans, a feature shared with the cell walls of all macroalgae(4) and that is important for ion homoeostasis, nutrient uptake and O-2/CO2 exchange through leaf epidermal cells. The Z. marina genome resource will markedly advance a wide range of functional ecological studies from adaptation of marine ecosystems under climate warming(5,6), to unravelling the mechanisms of osmoregulation under high salinities that may further inform our understanding of the evolution of salt tolerance in crop plants(7)
Normal Human Pluripotent Stem Cell Lines Exhibit Pervasive Mosaic Aneuploidy
Human pluripotent stem cell (hPSC) lines have been considered to be homogeneously euploid. Here we report that normal hPSC – including induced pluripotent - lines are karyotypic mosaics of euploid cells intermixed with many cells showing non-clonal aneuploidies as identified by chromosome counting, spectral karyotyping (SKY) and fluorescent in situ hybridization (FISH) of interphase/non-mitotic cells. This mosaic aneuploidy resembles that observed in progenitor cells of the developing brain and preimplantation embryos, suggesting that it is a normal, rather than pathological, feature of stem cell lines. The karyotypic heterogeneity generated by mosaic aneuploidy may contribute to the reported functional and phenotypic heterogeneity of hPSCs lines, as well as their therapeutic efficacy and safety following transplantation
The evolutionary significance of polyploidy
Polyploidy, or the duplication of entire genomes, has been observed in prokaryotic and eukaryotic organisms, and in somatic and germ cells. The consequences of polyploidization are complex and variable, and they differ greatly between systems (clonal or non-clonal) and species, but the process has often been considered to be an evolutionary 'dead end'. Here, we review the accumulating evidence that correlates polyploidization with environmental change or stress, and that has led to an increased recognition of its short-term adaptive potential. In addition, we discuss how, once polyploidy has been established, the unique retention profile of duplicated genes following whole-genome duplication might explain key longer-term evolutionary transitions and a general increase in biological complexity
Complex Reorganization and Predominant Non-Homologous Repair Following Chromosomal Breakage in Karyotypically Balanced Germline Rearrangements and Transgenic Integration
We defined the genetic landscape of balanced chromosomal rearrangements at nucleotide resolution by sequencing 141 breakpoints from cytogenetically-interpreted translocations and inversions. We confirm that the recently described phenomenon of “chromothripsis” (massive chromosomal shattering and reorganization) is not unique to cancer cells but also occurs in the germline where it can resolve to a karyotypically balanced state with frequent inversions. We detected a high incidence of complex rearrangements (19.2%) and substantially less reliance on microhomology (31%) than previously observed in benign CNVs. We compared these results to experimentally-generated DNA breakage-repair by sequencing seven transgenic animals, and revealed extensive rearrangement of the transgene and host genome with similar complexity to human germline alterations. Inversion is the most common rearrangement, suggesting that a combined mechanism involving template switching and non-homologous repair mediates the formation of balanced complex rearrangements that are viable, stably replicated and transmitted unaltered to subsequent generations
Aneuploidy in pluripotent stem cells and implications for cancerous transformation
Owing to a unique set of attributes, human pluripotent stem cells (hPSCs) have emerged as a promising cell source for regenerative medicine, disease modeling and drug discovery. Assurance of genetic stability over long term maintenance of hPSCs is pivotal in this endeavor, but hPSCs can adapt to life in culture by acquiring non-random genetic changes that render them more robust and easier to grow. In separate studies between 12.5% and 34% of hPSC lines were found to acquire chromosome abnormalities over time, with the incidence increasing with passage number. The predominant genetic changes found in hPSC lines involve changes in chromosome number and structure (particularly of chromosomes 1, 12, 17 and 20), reminiscent of the changes observed in cancer cells. In this review, we summarize current knowledge on the causes and consequences of aneuploidy in hPSCs and highlight the potential links with genetic changes observed in human cancers and early embryos. We point to the need for comprehensive characterization of mechanisms underpinning both the acquisition of chromosomal abnormalities and selection pressures, which allow mutations to persist in hPSC cultures. Elucidation of these mechanisms will help to design culture conditions that minimize the appearance of aneuploid hPSCs. Moreover, aneuploidy in hPSCs may provide a unique platform to analyse the driving forces behind the genome evolution that may eventually lead to cancerous transformation
Multi-minicore Disease
Multi-minicore Disease (MmD) is a recessively inherited neuromuscular disorder characterized by multiple cores on muscle biopsy and clinical features of a congenital myopathy. Prevalence is unknown. Marked clinical variability corresponds to genetic heterogeneity: the most instantly recognizable classic phenotype characterized by spinal rigidity, early scoliosis and respiratory impairment is due to recessive mutations in the selenoprotein N (SEPN1) gene, whereas recessive mutations in the skeletal muscle ryanodine receptor (RYR1) gene have been associated with a wider range of clinical features comprising external ophthalmoplegia, distal weakness and wasting or predominant hip girdle involvement resembling central core disease (CCD). In the latter forms, there may also be a histopathologic continuum with CCD due to dominant RYR1 mutations, reflecting the common genetic background. Pathogenetic mechanisms of RYR1-related MmD are currently not well understood, but likely to involve altered excitability and/or changes in calcium homeoestasis; calcium-binding motifs within the selenoprotein N protein also suggest a possible role in calcium handling. The diagnosis of MmD is based on the presence of suggestive clinical features and multiple cores on muscle biopsy; muscle MRI may aid genetic testing as patterns of selective muscle involvement are distinct depending on the genetic background. Mutational analysis of the RYR1 or the SEPN1 gene may provide genetic confirmation of the diagnosis. Management is mainly supportive and has to address the risk of marked respiratory impairment in SEPN1-related MmD and the possibility of malignant hyperthermia susceptibility in RYR1-related forms. In the majority of patients, weakness is static or only slowly progressive, with the degree of respiratory impairment being the most important prognostic factor
- …