64 research outputs found

    Boundary layer convective-like activity at Dome Concordia, Antarctica

    Get PDF
    The paper presents the micro-meteorological field experiment carried out at the plateau station of Dome Concordia (3300 m a.s.l.) during the Antarctic summer of 1997. The experiment dealt with the study of the trends of boundary layer features and the characteristics of the surface energy and momentum exchanges. A monostatic Doppler sodar, fast-response sensors and radiometers were used for this study. The experiment was part of a program that aims to assess the role of the continental polar regions in shaping the surface circulation over Antarctica. In spite of the markedly stable conditions found throughout the investigated period, some convective-like activity was detected during the warmer hours of the day

    Metformin exposure, maternal PCOS status and fetal venous liver circulation: A randomized, placebo-controlled study

    Get PDF
    Background: Metformin is prescribed to women with polycystic ovary syndrome (PCOS) to prevent pregnancy complications. Children exposed to metformin vs. placebo in utero, have increased head circumference at birth and are more overweight and obese at 8 years of age. Also, maternal PCOS-status seems to alter the long-term cardio-metabolic health of offspring. We hypothesized that the long-term effects of metformin-exposure and/or maternal PCOS may be mediated by circulatory adaptations during fetal life. Material and methods: This is a sub-study of a larger double-blinded, placebo-controlled trial, where women with PCOS were randomized to metformin (2g/day) or placebo in pregnancy, a total of 487 women. A sub-group of participants (N = 58) took part in this sub-study and had an extended ultrasound examination at gestational week 32, including blood flow velocity and diameter measurements of the umbilical vein (UV), the ductus venosus (DV) and the portal vein (PV). Blood flow volume was calculated and adjusted for estimated fetal weight (EFW) (normalized flow). Metformin exposed fetuses were compared to placebo exposed fetuses. Fetuses of mothers with PCOS (metformin [n = 30] and placebo [n = 28]) were compared to a low-risk reference population (N = 160) by z-score statistics. Results: There was no difference in fetal liver flow between metformin vs. placebo-exposed fetuses. Fetuses of mothers with PCOS had higher EFW (0.63 [95% CI 0.44–0.83] p<0.001), lower normalized UV, DV, PV, and lower total venous liver blood flows than the reference population. Conclusion: Metformin during pregnancy did not affect fetal liver blood-flow. In our population, maternal PCOS-status was associated with reduced total venous liver blood-flow, which may explain altered growth and metabolism later in life.publishedVersio

    High-intensity interval training in polycystic ovary syndrome : A two-center, three-armed randomized

    Get PDF
    Purpose Exercise training is recommended to improve cardiometabolic health and fertility in women with polycystic ovary syndrome (PCOS), yet there are few randomized controlled trials on the effects of different exercise protocols on clinical reproductive outcomes. Our aim was to determine the effect of high-intensity interval training (HIT) on menstrual frequency, as a proxy of reproductive function, in women with PCOS. Methods The IMPROV-IT study was a two-center randomized controlled trial undertaken in Norway and Australia. Women with PCOS were eligible for inclusion. After stratification for body mass index <27 or ≥27 kg·m−2 and study center, participants were randomly allocated (1:1:1) to high-volume HIT (HV-HIT), low-volume HIT (LV-HIT), or a control group. Measurements were assessed at baseline, after the 16-wk exercise intervention, and at 12-month follow-up. The primary outcome was menstrual frequency after 12 months. Secondary outcomes included markers of cardiometabolic and reproductive health, quality of life, and adherence to and enjoyment of HIT. Results We randomly allocated 64 participants to the HV-HIT (n = 20), LV-HIT (n = 21), or control group (n = 23). There were no differences in menstrual frequency at 12 months between the LV-HIT and control groups (frequency ratio, 1.02; 95% confidence interval [CI], 0.73–1.42), the HV-HIT and control groups (frequency ratio, 0.93; 95% CI, 0.67–1.29), or the LV-HIT and HV-HIT groups (frequency ratio, 1.09; 95% CI, 0.77–1.56). Menstrual frequency increased in all groups from baseline to 12 months. More participants became pregnant in the LV-HIT group (n = 5) than in the control group (n = 0, P = 0.02). Conclusions A semisupervised HIT intervention did not increase menstrual frequency in women with PCOS. Clinical Trial Registration Number:ClinicalTrials.gov (NCT02419482)

    Maternal PCOS status and metformin in pregnancy: Steroid hormones in 5–10 years old children from the PregMet randomized controlled study

    Get PDF
    Objective: Polycystic ovary syndrome (PCOS) is a common endocrine disorder, with potential effects on offspring both genetically and through altered intrauterine environment. Metformin, which ameliorate hormonal disturbances in non-pregnant women with PCOS is increasingly used in pregnancy. It passes the placenta, and the evidence on potential consequences for offspring endocrine development is scarce. We explore the potential effects of maternal PCOS status and intrauterine metformin exposure on offspring steroid hormone levels. Design: This is a follow-up study of 5–10 years old children from the PregMet-study–a randomized controlled trial comparing metformin (2000 mg/day) to placebo during PCOS pregnancies. Of the 255 children invited, 117 (46%) were included. Methods: There was no intervention in this follow-up study. Outcomes were serum levels of androstenedione, testosterone, SHBG, cortisol, 17-hydroxyprogesterone, 11-deoxycortisol and calculated free testosterone converted to gender-and age adjusted z-scores from a Norwegian reference population. These were compared in i) placebo-exposed children versus children from the reference population (z-score zero) by the deviation in z-score by one-sample t-tests and ii) metformin versus placebo-exposed children by two-sample t-tests. Holm-Bonferroni adjustments were performed to account for multiple endpoints. Results: Girls of mothers with PCOS (n = 30) had higher mean z-scores of androstenedione (0.73 (95% confidence interval (CI) 0.41 to 1.06), p<0.0001), testosterone (0.76 (0.51 to 1.00), p<0.0001), and free testosterone (0.99 (0.67 to 1.32), p<0.0001) than the reference population. Metformin-exposed boys (n = 31) tended to have higher 11-deoxycortisol z-score than placebo-exposed boys (n = 24) (mean difference 0.65 (95% CI 0.14–1.17), p = 0.014). Conclusion: Maternal PCOS status was associated with elevated androgens in 5- to 10-year-old daughters, which might indicate earlier maturation and increased risk of developing PCOS. An impact of metformin in pregnancy on steroidogenesis in children born to mothers with PCOS cannot be excluded. Our findings need confirmation in studies that include participants that have entered puberty.publishedVersio

    Anthropometrics of neonates born to mothers with PCOS with metformin or placebo exposure in utero

    Get PDF
    Introduction: Fetal growth may be affected by both maternal polycystic ovary syndrome (PCOS) and metformin therapy. Here, we explore the effect of intrauterine metformin exposure on birth anthropometrics of infants born to women with PCOS. We also investigated whether the effect of metformin on birth anthropometrics is modified by maternal pre-pregnancy body mass index, PCOS hyperandrogenic phenotype, serum androgen levels, preconception use of metformin and offspring sex. Additionally, we assessed newborn anthropometrics in relation to a national reference population. Material and methods: Individual data from three randomized controlled triasl were pooled. The randomized controlled trials investigated the effects of metformin in pregnant women with PCOS. In all, 397 and 403 were randomized to the metformin and placebo groups, respectively. A Scandinavian growth reference was used to calculate sex and gestational age adjusted z-scores. Linear regression models were used to estimate the effect of metformin on offspring z-scores of head circumference, birth length, birthweight, placental weight, body mass index, ponderal index and birthweight:placental weight ratio. S-testosterone, s-androstenedione, and s-sex-hormone binding globulin from four timepoints in pregnancy were analyzed. Results: Compared with the PCOS-placebo group, newborns in the PCOS-metformin group had larger head circumference (head circumference z-score: mean difference = 0.25, 95% CI = 0.11– 0.40). This effect of metformin on head circumference z-score was particularly observed among offspring of overweight/obese mothers and mothers with hyperandrogenic PCOS-phenotype. We observed no difference in other anthropometric measures between the metformin and placebo groups or any clear interaction between maternal androgen levels and metformin. Newborns in the PCOS-placebo group were shorter than in the reference population (birth length z-score: mean = −0.04, 95% CI = –0.05 to −0.03), but head circumference and birthweight were similar. Conclusions: Larger head circumference was observed at birth in metformin-exposed offspring of mothers with PCOS. PCOS-offspring were also shorter, with a similar birthweight to the reference population, indirectly indicating higher weight-to-height ratio at birth.publishedVersio

    Normo- and hyperandrogenic women with polycystic ovary syndrome exhibit an adverse metabolic profile through life

    Get PDF
    Objective: To compare the metabolic profiles of normo- and hyperandrogenic women with polycystic ovary syndrome (PCOS) with those of control women at different ages during reproductive life. Design: Case-control study. Setting: Not applicable. Patient(s): In all, 1,550 women with normoandrogenic (n = 686) or hyperandrogenic (n = 842) PCOS and 447 control women were divided into three age groups: 39 years). Interventions(s): None. Main Outcome Measure(s): Body mass index (BMI), waist circumference, blood pressure, glucose, insulin, cholesterol, lipoproteins, triglycerides and high-sensitivity C-reactive protein. Result(s): Both normo- and hyperandrogenic women with PCOS were more obese, especially abdominally. They had increased serum levels of insulin (fasting and in oral glucose tolerance tests), triglycerides, low-density lipoprotein, and total cholesterol, higher blood pressure, and lower high-density lipoprotein levels independently from BMI compared with the control population as early as from young adulthood until menopause. The prevalence of metabolic syndrome was two-to fivefold higher in women with PCOS compared with control women, depending on age and phenotype, and the highest prevalence was observed in hyperandrogenic women with PCOS at late reproductive age. Conclusion(s): When evaluating metabolic risks in women with PCOS, androgenic status, especially abdominal obesity and age, should be taken into account, which would allow tailored management of the syndrome from early adulthood on. (C) 2016 by American Society for Reproductive Medicine.Peer reviewe

    Higher blood pressure in normal weight women with PCOS compared to controls

    Get PDF
    Objective: Obesity is considered to be the strongest predictive factor for cardio-metabolic risk in women with polycystic ovary syndrome (PCOS). The aim of the study was to compare blood pressure (BP) in normal weight women with PCOS and controls matched for age and BMI. Methods: From a Nordic cross-sectional base of 2615 individuals of Nordic ethnicity, we studied a sub cohort of 793 normal weight women with BMI = 140/90 mmHg was 11.1% (57/ 512) in women with PCOS vs 1.8% (5/281) in controls, P = 35 years the prevalence of BP >= 140/90 mmHg was comparable in women with PCOS and controls (12.7% vs 9.8%, P = 0.6). Using multiple regression analyses, the strongest association with BP was found for age, waist circumference, and total cholesterol in women with PCOS. Conclusions: Normal weight women with PCOS have higher BP than controls. BP and metabolic screening are relevant also in young normal weight women with PCOS.Peer reviewe

    Metformin in Pregnancy Study (MiPS): Protocol for a systematic review with individual patient data meta-analysis

    Get PDF
    AbstractIntroduction Gestational diabetes mellitus (GDM) is a common disorder of pregnancy and contributes to adverse pregnancy outcomes. Metformin is often used for the prevention and management of GDM; however, its use in pregnancy continues to be debated. The Metformin in Pregnancy Study aims to use individual patient data (IPD) meta-analysis to clarify the efficacy and safety of metformin use in pregnancy and to identify relevant knowledge gaps.Methods and analysis MEDLINE, EMBASE and all Evidence-Based Medicine will be systematically searched for randomised controlled trials (RCT) testing the efficacy of metformin compared with placebo, usual care or other interventions in pregnant women. Two independent reviewers will assess eligibility using prespecified criteria and will conduct data extraction and quality appraisal of eligible studies. Authors of included trials will be contacted and asked to contribute IPD. Primary outcomes include maternal glycaemic parameters and GDM, as well as neonatal hypoglycaemia, anthropometry and gestational age at delivery. Other adverse maternal, birth and neonatal outcomes will be assessed as secondary outcomes. IPD from these RCTs will be harmonised and a two-step meta-analytic approach will be used to determine the efficacy and safety of metformin in pregnancy, with a priori adjustment for covariates and subgroups to examine effect moderators of treatment outcomes. Sensitivity analyses will assess heterogeneity, risk of bias and the impact of trials which have not provided IPD.Ethics and disseminationAll IPD will be deidentified and studies contributing IPD will have ethical approval from their respective local ethics committees. This study will provide robust evidence regarding the efficacy and safety of metformin use in pregnancy, and may identify subgroups of patients who may benefit most from this treatment modality. Findings will be published in peer-reviewed journals and disseminated at scientific meetings, providing much needed evidence to inform clinical and public health actions in this area.</p

    Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome

    Get PDF
    Study Question What is the recommended assessment and management of women with polycystic ovary syndrome (PCOS), based on the best available evidence, clinical expertise, and consumer preference? Summary Answer International evidence-based guidelines including 166 recommendations and practice points, addressed prioritized questions to promote consistent, evidence-based care and improve the experience and health outcomes of women with PCOS. What Is Known Already Previous guidelines either lacked rigorous evidence-based processes, did not engage consumer and international multidisciplinary perspectives, or were outdated. Diagnosis of PCOS remains controversial and assessment and management are inconsistent. The needs of women with PCOS are not being adequately met and evidence practice gaps persist. Study Design, Size, Duration International evidence-based guideline development engaged professional societies and consumer organizations with multidisciplinary experts and women with PCOS directly involved at all stages. Appraisal of Guidelines for Research and Evaluation (AGREE) II-compliant processes were followed, with extensive evidence synthesis. The Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) framework was applied across evidence quality, feasibility, acceptability, cost, implementation and ultimately recommendation strength. Participants/Materials, Setting, Methods Governance included a six continent international advisory and a project board, five guideline development groups, and consumer and translation committees. Extensive health professional and consumer engagement informed guideline scope and priorities. Engaged international society-nominated panels included pediatrics, endocrinology, gynecology, primary care, reproductive endocrinology, obstetrics, psychiatry, psychology, dietetics, exercise physiology, public health and other experts, alongside consumers, project management, evidence synthesis, and translation experts. Thirty-seven societies and organizations covering 71 countries engaged in the process. Twenty face-to-face meetings over 15 months addressed 60 prioritized clinical questions involving 40 systematic and 20 narrative reviews. Evidence-based recommendations were developed and approved via consensus voting within the five guideline panels, modified based on international feedback and peer review, with final recommendations approved across all panels. Main Results and the Role of Chance The evidence in the assessment and management of PCOS is generally of low to moderate quality. The guideline provides 31 evidence based recommendations, 59 clinical consensus recommendations and 76 clinical practice points all related to assessment and management of PCOS. Key changes in this guideline include: i) considerable refinement of individual diagnostic criteria with a focus on improving accuracy of diagnosis; ii) reducing unnecessary testing; iii) increasing focus on education, lifestyle modification, emotional wellbeing and quality of life; and iv) emphasizing evidence based medical therapy and cheaper and safer fertility management. Limitations, Reasons for Caution Overall evidence is generally low to moderate quality, requiring significantly greater research in this neglected, yet common condition, especially around refining specific diagnostic features in PCOS. Regional health system variation is acknowledged and a process for guideline and translation resource adaptation is provided. Wider Implications of the Findings The international guideline for the assessment and management of PCOS provides clinicians with clear advice on best practice based on the best available evidence, expert multidisciplinary input and consumer preferences. Research recommendations have been generated and a comprehensive multifaceted dissemination and translation program supports the guideline with an integrated evaluation program. Study Funding/Competing Interest(S) The guideline was primarily funded by the Australian National Health and Medical Research Council of Australia (NHMRC) supported by a partnership with ESHRE and the American Society for Reproductive Medicine. Guideline development group members did not receive payment. Travel expenses were covered by the sponsoring organizations. Disclosures of conflicts of interest were declared at the outset and updated throughout the guideline process, aligned with NHMRC guideline processes. Full details of conflicts declared across the guideline development groups are available at https://www.monash.edu/medicine/sphpm/mchri/pcos/guideline in the Register of disclosures of interest. Of named authors, Dr Costello has declared shares in Virtus Health and past sponsorship from Merck Serono for conference presentations. Prof. Laven declared grants from Ferring, Euroscreen and personal fees from Ferring, Euroscreen, Danone and Titus Healthcare. Prof. Norman has declared a minor shareholder interest in an IVF unit. The remaining authors have no conflicts of interest to declare. The guideline was peer reviewed by special interest groups across our partner and collaborating societies and consumer organizations, was independently assessed against AGREEII criteria and underwent methodological review. This guideline was approved by all members of the guideline development groups and was submitted for final approval by the NHMRC
    corecore