7 research outputs found

    The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6

    Get PDF
    The Earth system model EC-Earth3 for contributions to CMIP6 is documented here, with its flexible coupling framework, major model configurations, a methodology for ensuring the simulations are comparable across different high-performance computing (HPC) systems, and with the physical performance of base configurations over the historical period. The variety of possible configurations and sub-models reflects the broad interests in the EC-Earth community. EC-Earth3 key performance metrics demonstrate physical behavior and biases well within the frame known from recent CMIP models. With improved physical and dynamic features, new Earth system model (ESM) components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.Peer reviewe

    The benthic foraminiferal response to the mid-Maastrichtian event in the NW-European chalk sea of the Maastrichtian type area

    No full text
    International audienceAbstract The mid-Maastrichtian carbon isotope event (MME), dated at ∌69 Ma, reflects a perturbation of the global carbon cycle that, in part, correlates with the enigmatic global extinction of ‘true’ (i.e., non-tegulated) inoceramid bivalves. The mechanisms of this extinction event are still debated. While both the inoceramid extirpation and MME have been recorded in a variety of deep-sea sites, little is known about their expression in epicontinental chalk seas. In order to study the shallow-marine signature of the MME in this epicontinental shelf sea, we have generated quantitative foraminiferal assemblage data for two quarries (Hallembaye, NE Belgium; ENCI, SE Netherlands) in the Maastrichtian type area, complemented by a species-specific benthic ÎŽ 13 C record. In contrast to deep-sea records, no significant changes in benthic foraminiferal assemblages and benthic foraminiferal accumulation rates are observed across the MME in the type-Maastrichtian area. At the Hallembaye quarry, the otherwise rare endobenthic species Cuneus trigona reaches a transient peak abundance of 33.3% at the onset of the MME, likely caused by a local transient change in organic matter flux to the seafloor. Nevertheless, high and near-constant species evenness shows that neither oxygen nor organic matter flux was limited across the extinction level or during the MME. Benthic foraminiferal data from the uppermost part of the studied section, above the MME, indicate a significant increase in food supply to the seafloor. Decreased amounts of terrigenous elements across this interval document a lesser riverine or aeolian influx, which means that the increased benthic productivity is linked to a different origin. Potentially, the continuous precipitation of chalk under nutrient-poor conditions in the Late Cretaceous chalk sea was enabled by efficient nutrient recycling in the water column. In shallower depositional settings, nutrient recycling took place closer to the seafloor, which allowed more organic matter to reach the bottom. These results provide insights in the importance of nutrient cycling for biological productivity in the NW-European chalk sea

    Punicic Acid Triggers Ferroptotic Cell Death in Carcinoma Cells

    No full text
    Plant-derived conjugated linolenic acids (CLnA) have been widely studied for their preventive and therapeutic properties against diverse diseases such as cancer. In particular, punicic acid (PunA), a conjugated linolenic acid isomer (C18:3 c9t11c13) present at up to 83% in pomegranate seed oil, has been shown to exert anti-cancer effects, although the mechanism behind its cytotoxicity remains unclear. Ferroptosis, a cell death triggered by an overwhelming accumulation of lipid peroxides, has recently arisen as a potential mechanism underlying CLnA cytotoxicity. In the present study, we show that PunA is highly cytotoxic to HCT-116 colorectal and FaDu hypopharyngeal carcinoma cells grown either in monolayers or as three-dimensional spheroids. Moreover, our data indicate that PunA triggers ferroptosis in carcinoma cells. It induces significant lipid peroxidation and its effects are prevented by the addition of ferroptosis inhibitors. A combination with docosahexaenoic acid (DHA), a known polyunsaturated fatty acid with anticancer properties, synergistically increases PunA cytotoxicity. Our findings highlight the potential of using PunA as a ferroptosis-sensitizing phytochemical for the prevention and treatment of cancer

    The EC-Earth3 Earth System Model for the Climate Model Intercomparison Project 6

    No full text
    Abstract. The Earth System Model EC-Earth3 for contributions to CMIP6 is documented here, with its flexible coupling framework, major model configurations, a methodology for ensuring the simulations are comparable across different HPC systems, and with the physical performance of base configurations over the historical period. The variety of possible configurations and sub-models reflects the broad interests in the EC-Earth community. EC-Earth3 key performance metrics demonstrate physical behaviour and biases well within the frame known from recent CMIP models. With improved physical and dynamic features, new ESM components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond

    Sea-ice transport driving Southern Ocean salinity and its recent trends

    No full text
    Recent salinity changes in the Southern Ocean are among the most prominent signals of climate change in the global ocean, yet their underlying causes have not been firmly established. Here we propose that trends in the northward transport of Antarctic sea ice are a major contributor to these changes. Using satellite observations supplemented by sea-ice reconstructions, we estimate that wind-driven northward freshwater transport by sea ice increased by 20 ± 10 per cent between 1982 and 2008. The strongest and most robust increase occurred in the Pacific sector, coinciding with the largest observed salinity changes. We estimate that the additional freshwater for the entire northern sea-ice edge entails a freshening rate of −0.02 ± 0.01 grams per kilogram per decade in the surface and intermediate waters of the open ocean, similar to the observed freshening. The enhanced rejection of salt near the coast of Antarctica associated with stronger sea-ice export counteracts the freshening of both continental shelf and newly formed bottom waters due to increases in glacial meltwater. Although the data sources underlying our results have substantial uncertainties, regional analyses13 and independent data from an atmospheric reanalysis support our conclusions. Our finding that northward sea-ice freshwater transport is also a key determinant of the mean salinity distribution in the Southern Ocean further underpins the importance of the sea-ice-induced freshwater flux. Through its influence on the density structure of the ocean, this process has critical consequences for the global climate by affecting the exchange of heat, carbon and nutrients between the deep ocean and surface water
    corecore