114 research outputs found

    Diagnostic value of serum versus plasma phospho-tau for Alzheimer's disease

    Get PDF
    BACKGROUND: Blood phosphorylated tau (p-tau) forms are promising Alzheimer's disease (AD) biomarkers, but validation in matrices other than ethylenediaminetetraacetic acid (EDTA) plasma is limited. Firstly, we assessed the diagnostic potential of p-tau231 and p-tau181 in paired plasma and serum samples. Secondly, we compared serum and cerebrospinal fluid (CSF) samples from biomarker-positive AD and biomarker-negative control participants. METHODS: We studied three independent cohorts (n=115 total): cohorts 1 and 2 included individuals with paired plasma and serum, while cohort 3 included paired serum and CSF. Blood-based p-tau231 and p-tau181 were measured using in-house or commercial single molecule array (Simoa) methods. RESULTS: Serum and plasma p-tau231 and p-tau181 were two- to three-fold increased in biomarker-positive AD versus biomarker-negative controls (P≤0.0008). Serum p-tau231 separated diagnostic groups with area under the curve (AUC) of 82.2% (cohort 3) to 88.2% (cohort 1) compared with 90.2% (cohort 1) for plasma. Similarly, p-tau181 showed AUC of 89.6% (cohort 1) to 89.8% (cohort 3) in serum versus 85.4% in plasma (cohort 1). P-tau231 and p-tau181 correlated slightly better in serum (rho=0.92 for cohort 1, 0.93 for cohort 3) than in plasma (rho=0.88, cohort 1). Within-individual p-tau181 (Quanterix) and p-tau231 concentrations were twice higher in plasma versus serum, but p-tau181 (in-house, Gothenburg) levels were not statistically different. Bland-Altman plots revealed that the relative difference between serum/plasma was larger in the lower range. P-tau levels in paired plasma and serum correlated strongly with each other (rho=0.75-0.93) as well as with CSF Aβ42 (rho= -0.56 to -0.59), p-tau and total-tau (rho=0.53-0.73). Based on the results, it seems possible that serum p-tau reflects the same pool of brain-secreted p-tau as in CSF; we estimated that less than 2% of CSF p-tau is found in serum, being same for both controls and AD. CONCLUSIONS: Comparable diagnostic performances and strong correlations between serum versus plasma pairs suggest that p-tau analyses can be expanded to research cohorts and hospital systems that prefer serum to other blood matrices. However, absolute biomarker concentrations may not be interchangeable, indicating that plasma and serum samples should be used independently. These results should be validated in independent cohorts

    β-Secretase1 biological markers for Alzheimer's disease: state-of-art of validation and qualification

    Get PDF
    β-Secretase1 (BACE1) protein concentrations and rates of enzyme activity, analyzed in human bodily fluids, are promising candidate biological markers for guidance in clinical trials investigating BACE1 inhibitors to halt or delay the dysregulation of the amyloid-β pathway in Alzheimer’s disease (AD). A robust body of evidence demonstrates an association between cerebrospinal fluid/blood BACE1 biomarkers and core pathophysiological mechanisms of AD, such as brain protein misfolding and aggregration, neurodegeneration, and synaptic dysfunction. In pharmacological trials, BACE1 candidate biomarkers may be applied to a wide set of contexts of use (CoU), including proof of mechanism, dose-finding, response and toxicity dose estimation. For clinical CoU, BACE1 biomarkers show good performance for prognosis and disease prediction. The roadmap toward validation and qualification of BACE1 biomarkers requires standardized pre-analytical and analytical protocols to reduce inter-site variance that may have contributed to inconsistent results. BACE1 biomarker-drug co-development programs, including biomarker-guided outcomes and endpoints, may support the identification of sub-populations with a higher probability to benefit from BACE1 inhibitors with a reduced risk of adverse effects, in line with the evolving precision medicine paradigm

    Trade-Offs Between Carbon Stocks and Timber Recovery in Tropical Forests are Mediated by Logging Intensity

    Get PDF
    Forest degradation accounts for ~70% of total carbon losses from tropical forests. Substantial emissions are from selective logging, a land-use activity that decreases forest carbon density. To maintain carbon values in selectively logged forests, climate change mitigation policies and government agencies promote the adoption of reduced-impact logging (RIL) practices. However, whether RIL will maintain both carbon and timber values in managed tropical forests over time remains uncertain. In this study, we quantify the recovery of timber stocks and aboveground carbon at an experimental site where forests were subjected to different intensities of RIL (4, 8, and 16 trees/ha). Our census data span 20 years postlogging and 17 years after the liberation of future crop trees from competition in a tropical forest on the Guiana Shield, a globally important forest carbon reservoir. We model recovery of timber and carbon with a breakpoint regression that allowed us to capture elevated tree mortality immediately after logging. Recovery rates of timber and carbon were governed by the presence of residual trees (i.e., trees that persisted through the first harvest). The liberation treatment stimulated faster recovery of timber albeit at a carbon cost. Model results suggest a threshold logging intensity beyond which forests managed for timber and carbon derive few benefits from RIL, with recruitment and residual growth not sufficient to offset losses. Inclusion of the breakpoint at which carbon and timber gains outpaced postlogging mortality led to high predictive accuracy, including out-of-sample R2 values \u3e90%, and enabled inference on demographic changes postlogging. Our modeling framework is broadly applicable to studies that aim to quantify impacts of logging on forest recovery. Overall, we demonstrate that initial mortality drives variation in recovery rates, that the second harvest depends on old growth wood, and that timber intensification lowers carbon stocks

    Plasma p-tau181/Aβ1-42 ratio predicts Aβ-PET status and correlates with CSF-p-tau181/Aβ1-42 and future cognitive decline

    Get PDF
    Background: In Alzheimer\u27s disease (AD), plasma amyloid beta (Aβ)1-42 and phosphorylated tau (p-tau) predict high amyloid status from Aβ positron emission tomography (PET); however, the extent to which combination of these plasma assays can predict remains unknown. Methods: Prototype Simoa assays were used to measure plasma samples from participants who were either cognitively normal (CN) or had mild cognitive impairment (MCI)/AD in the Australian Imaging, Biomarkers and Lifestyle (AIBL) study. Results: The p-tau181/Aβ1-42 ratio showed the best prediction of Aβ-PET across all participants (area under the curve [AUC] = 0.905, 95% confidence interval [CI]: 0.86–0.95) and in CN (AUC = 0.873; 0.80–0.94), and symptomatic (AUC = 0.908; 0.82–1.00) adults. Plasma p-tau181/Aβ1-42 ratio correlated with cerebrospinal fluid (CSF) p-tau181 (Elecsys, Spearman\u27s ρ = 0.74, P \u3c 0.0001) and predicted abnormal CSF Aβ (AUC = 0.816; 0.74–0.89). The p-tau181/Aβ1-42 ratio also predicted future rates of cognitive decline assessed by AIBL Preclinical Alzheimer Cognitive Composite or Clinical Dementia Rating Sum of Boxes (P \u3c 0.0001). Discussion: Plasma p-tau181/Aβ1-42 ratio predicted both Aβ-PET status and cognitive decline, demonstrating potential as both a diagnostic aid and as a screening and prognostic assay for preclinical AD trials

    A Large Hadron Electron Collider at CERN

    Full text link
    This document provides a brief overview of the recently published report on the design of the Large Hadron Electron Collider (LHeC), which comprises its physics programme, accelerator physics, technology and main detector concepts. The LHeC exploits and develops challenging, though principally existing, accelerator and detector technologies. This summary is complemented by brief illustrations of some of the highlights of the physics programme, which relies on a vastly extended kinematic range, luminosity and unprecedented precision in deep inelastic scattering. Illustrations are provided regarding high precision QCD, new physics (Higgs, SUSY) and electron-ion physics. The LHeC is designed to run synchronously with the LHC in the twenties and to achieve an integrated luminosity of O(100) fb1^{-1}. It will become the cleanest high resolution microscope of mankind and will substantially extend as well as complement the investigation of the physics of the TeV energy scale, which has been enabled by the LHC

    Glycosylation of acetylcholinesterase and butyrylcholinesterase changes as a function of the duration of Alzheimer's disease

    Get PDF
    The identification of biochemical markers of Alzheimer's disease (AD) may help in the diagnosis of the disease. Previous studies have shown that Aβ1–42 is decreased, and tau and phospho-tau are increased in AD cerebrospinal fluid (CSF). Our own studies have identified glycosylated isoforms of acetylcholinesterase (Glyc-AChE) and butyrylcholinesterase (Glyc-BuChE) that are increased in AD CSF. Glyc-AChE is increased in APP (SW) Tg2576 transgenic mice prior to amyloid plaque deposition, which suggests that Glyc-AChE may be an early marker of AD. The aim of this study was to determine whether Glyc-AChE or Glyc-BuChE is increased in CSF at early stages of AD and to compare the levels of these markers with those of Aβ1–42, tau and phospho-tau. Lumbar CSF was obtained ante mortem from 106 non-AD patients, including 15 patients with mild cognitive impairment (MCI), and 102 patients with probable AD. Glyc-AChE, tau and phospho-tau were significantly increased in the CSF of AD patients compared to non-neurological disease (NND) controls. Aβ1–42 was lower in the AD patients than in NND controls. A positive correlation was found between the levels of Glyc-AChE or Glyc-BuChE and disease duration. However, there was no clear correlation between the levels of tau, phospho-tau or Aβ1–42 and disease duration. The results suggest that Glyc-AChE and Glyc-BuChE are unlikely to be early markers of AD, although they may have value as markers of disease progression.This work was supported by research grants from the National Health and Medical Research Council of Australia, the RL Cooper Medical Research Foundation of Australia, by a sponsored research agreement with Axonyx Inc. (New York), Innogenetics (Belgium), and by the Swedish Medical Research Council. J. S.-V. was partially sponsored by a fellowship from Navarro Tripodi Foundation of Spain and Innogentics (Belgium) and by a grant from the MCyT of Spain (Ramón y Cajal Program).Peer reviewe

    Neuroinflammation in Lyme neuroborreliosis affects amyloid metabolism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The metabolism of amyloid precursor protein (APP) and β-amyloid (Aβ) is widely studied in Alzheimer's disease, where Aβ deposition and plaque development are essential components of the pathogenesis. However, the physiological role of amyloid in the adult nervous system remains largely unknown. We have previously found altered cerebral amyloid metabolism in other neuroinflammatory conditions. To further elucidate this, we investigated amyloid metabolism in patients with Lyme neuroborreliosis (LNB).</p> <p>Methods</p> <p>The first part of the study was a cross-sectional cohort study in 61 patients with acute facial palsy (19 with LNB and 42 with idiopathic facial paresis, Bell's palsy) and 22 healthy controls. CSF was analysed for the β-amyloid peptides Aβ38, Aβ40 and Aβ42, and the amyloid precursor protein (APP) isoforms α-sAPP and β-sAPP. CSF total-tau (T-tau), phosphorylated tau (P-tau) and neurofilament protein (NFL) were measured to monitor neural cell damage. The second part of the study was a prospective cohort-study in 26 LNB patients undergoing consecutive lumbar punctures before and after antibiotic treatment to study time-dependent dynamics of the biomarkers.</p> <p>Results</p> <p>In the cross-sectional study, LNB patients had lower levels of CSF α-sAPP, β-sAPP and P-tau, and higher levels of CSF NFL than healthy controls and patients with Bell's palsy. In the prospective study, LNB patients had low levels of CSF α-sAPP, β-sAPP and P-tau at baseline, which all increased towards normal at follow-up.</p> <p>Conclusions</p> <p>Amyloid metabolism is altered in LNB. CSF levels of α-sAPP, β-sAPP and P-tau are decreased in acute infection and increase after treatment. In combination with earlier findings in multiple sclerosis, cerebral SLE and HIV with cerebral engagement, this points to an influence of neuroinflammation on amyloid metabolism.</p

    Multicenter benchmarking of short and long read wet lab protocols for clinical viral metagenomics

    Get PDF
    Metagenomics is gradually being implemented for diagnosing infectious diseases. However, in-depth protocol comparisons for viral detection have been limited to individual sets of experimental workflows and laboratories. In this study, we present a benchmark of metagenomics protocols used in clinical diagnostic laboratories initiated by the European Society for Clinical Virology (ESCV) Network on NGS (ENNGS). A mock viral reference panel was designed to mimic low biomass clinical specimens. The panel was used to assess the performance of twelve metagenomic wet lab protocols currently in use in the diagnostic laboratories of participating ENNGS member institutions. Both Illumina and Nanopore, shotgun and targeted capture probe protocols were included. Performance metrics sensitivity, specificity, and quantitative potential were assessed using a central bioinformatics pipeline. Overall, viral pathogens with loads down to 104 copies/ml (corresponding to CT values of 31 in our PCR assays) were detected by all the evaluated metagenomic wet lab protocols. In contrast, lower abundant mixed viruses of CT values of 35 and higher were detected only by a minority of the protocols. Considering the reference panel as the gold standard, optimal thresholds to define a positive result were determined per protocol, based on the horizontal genome coverage. Implementing these thresholds, sensitivity and specificity of the protocols ranged from 67 to 100 % and 87 to 100 %, respectively. A variety of metagenomic protocols are currently in use in clinical diagnostic laboratories. Detection of low abundant viral pathogens and mixed infections remains a challenge, implying the need for standardization of metagenomic analysis for use in clinical settings.</p

    Multicenter benchmarking of short and long read wet lab protocols for clinical viral metagenomics

    Get PDF
    Metagenomics is gradually being implemented for diagnosing infectious diseases. However, in-depth protocol comparisons for viral detection have been limited to individual sets of experimental workflows and laboratories. In this study, we present a benchmark of metagenomics protocols used in clinical diagnostic laboratories initiated by the European Society for Clinical Virology (ESCV) Network on NGS (ENNGS). A mock viral reference panel was designed to mimic low biomass clinical specimens. The panel was used to assess the performance of twelve metagenomic wet lab protocols currently in use in the diagnostic laboratories of participating ENNGS member institutions. Both Illumina and Nanopore, shotgun and targeted capture probe protocols were included. Performance metrics sensitivity, specificity, and quantitative potential were assessed using a central bioinformatics pipeline. Overall, viral pathogens with loads down to 104 copies/ml (corresponding to CT values of 31 in our PCR assays) were detected by all the evaluated metagenomic wet lab protocols. In contrast, lower abundant mixed viruses of CT values of 35 and higher were detected only by a minority of the protocols. Considering the reference panel as the gold standard, optimal thresholds to define a positive result were determined per protocol, based on the horizontal genome coverage. Implementing these thresholds, sensitivity and specificity of the protocols ranged from 67 to 100 % and 87 to 100 %, respectively. A variety of metagenomic protocols are currently in use in clinical diagnostic laboratories. Detection of low abundant viral pathogens and mixed infections remains a challenge, implying the need for standardization of metagenomic analysis for use in clinical settings.</p
    corecore