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Abstract 

Background: Blood phosphorylated tau (p‑tau) forms are promising Alzheimer’s disease (AD) biomarkers, but valida‑
tion in matrices other than ethylenediaminetetraacetic acid (EDTA) plasma is limited. Firstly, we assessed the diag‑
nostic potential of p‑tau231 and p‑tau181 in paired plasma and serum samples. Secondly, we compared serum and 
cerebrospinal fluid (CSF) samples from biomarker‑positive AD and biomarker‑negative control participants.

Methods: We studied three independent cohorts (n=115 total): cohorts 1 and 2 included individuals with paired 
plasma and serum, while cohort 3 included paired serum and CSF. Blood‑based p‑tau231 and p‑tau181 were meas‑
ured using in‑house or commercial single molecule array (Simoa) methods.

Results: Serum and plasma p‑tau231 and p‑tau181 were two‑ to three‑fold increased in biomarker‑positive AD ver‑
sus biomarker‑negative controls (P≤0.0008). Serum p‑tau231 separated diagnostic groups with area under the curve 
(AUC) of 82.2% (cohort 3) to 88.2% (cohort 1) compared with 90.2% (cohort 1) for plasma. Similarly, p‑tau181 showed 
AUC of 89.6% (cohort 1) to 89.8% (cohort 3) in serum versus 85.4% in plasma (cohort 1). P‑tau231 and p‑tau181 cor‑
related slightly better in serum (rho=0.92 for cohort 1, 0.93 for cohort 3) than in plasma (rho=0.88, cohort 1). Within‑
individual p‑tau181 (Quanterix) and p‑tau231 concentrations were twice higher in plasma versus serum, but p‑tau181 
(in‑house, Gothenburg) levels were not statistically different. Bland‑Altman plots revealed that the relative difference 
between serum/plasma was larger in the lower range. P‑tau levels in paired plasma and serum correlated strongly 
with each other (rho=0.75–0.93) as well as with CSF Aβ42 (rho= −0.56 to −0.59), p‑tau and total‑tau (rho=0.53–0.73). 
Based on the results, it seems possible that serum p‑tau reflects the same pool of brain‑secreted p‑tau as in CSF; we 
estimated that less than 2% of CSF p‑tau is found in serum, being same for both controls and AD.

Conclusions: Comparable diagnostic performances and strong correlations between serum versus plasma pairs 
suggest that p‑tau analyses can be expanded to research cohorts and hospital systems that prefer serum to other 
blood matrices. However, absolute biomarker concentrations may not be interchangeable, indicating that plasma and 
serum samples should be used independently. These results should be validated in independent cohorts.
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Background
Recent studies have shown blood phosphorylated tau 
(p-tau) forms to be reliable biomarkers in supporting 
a diagnosis of Alzheimer’s disease (AD) [1–5] and in 
screening for individuals with biomarker evidence of the 
disease in the absence of cognitive impairment [6–10]. 
Blood-based p-tau biomarkers increase according to 
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amyloid beta (Aβ) pathology and disease severity, asso-
ciate well with established cerebrospinal fluid (CSF) and 
neuroimaging biomarkers, and differentiate biomarker-
positive AD dementia from other dementias as well as 
Aβ-negative controls [1, 2, 5, 6, 11]. Importantly, blood 
p-tau is highly accurate at detecting brain amyloido-
sis and in predicting those who will progress to cogni-
tive impairment and neurodegeneration, often at similar 
magnitude as CSF p-tau [2, 6, 8, 12–16]. These findings 
support the integration of blood p-tau analyses into rou-
tine clinical assessments and population screening pro-
grams to identify biological evidence of AD, especially in 
the face of the recent approval of the anti-amyloid drug 
aducanumab (Aduhelm®) and the ongoing consideration 
of other anti-amyloid therapies by the US Food and Drug 
Administration (FDA) and equivalent regulatory agencies 
elsewhere [17–21].

Despite the rapid progress, several analytical hurdles 
need to be addressed to allow for large-scale adoption of 
blood p-tau in clinical and research settings. For exam-
ple, recent head-to-head comparison studies have dem-
onstrated that blood p-tau biomarkers from independent 
research laboratories and biotechnology/pharmaceutical 
companies show high inter-assay correlations as well as 
analytical and diagnostic robustness for clinical use [22, 
23]. However, these studies have been limited to the use 
of blood processed into ethylenediaminetetraacetic acid 
(EDTA) plasma [22, 23]. Despite EDTA plasma being the 
most commonly used blood matrix type in the dementia 
biomarker field, it is unclear if other matrices are equally 
viable given previous reports of large matrix-dependent 
deviations in biomarker concentrations [24–26]. With 
blood p-tau already being included in anti-amyloid clini-
cal trial programs and with planned diagnostic applica-
tions expected in several clinics, it is vital to ensure the 
widespread use of these biomarkers in multiple settings 
including research and medical centers that preferably 
process blood into other matrix types [18–20, 27, 28].

So far, only p-tau181 has been shown to be measur-
able in paired samples and in matrices other than EDTA 
plasma [1, 24, 26, 29]. Despite strong inter-matrix cor-
relations, p-tau181 concentrations varied significantly 
between paired samples in different matrices [24, 26]. 
This was also true for total-tau, suggesting that variable 
matrix-dependent concentrations may be common to tau 
biomarkers and not just to p-tau [24, 26]. These results 
also point to a need for thorough verification of tau-
based biomarkers in non-EDTA plasma matrices prior to 
clinical use.

Blood biomarker verification in serum is essential given 
its widespread use in clinical settings. However, direct 
comparison of the diagnostic performances of different 
p-tau forms in serum is limited. In this proof-of-concept 

study, we investigated if p-tau231 and p-tau181 can be 
reliably measured in serum versus paired plasma samples 
to distinguish biomarker-positive AD cases from bio-
marker-negative controls, as previously shown for plasma 
and CSF in multiple independent cohorts [1, 5, 6, 9, 10, 
13, 30–34]. We then compared inter-matrix agreements 
between p-tau measures, and further validated the serum 
performance by evaluating associations with paired CSF 
samples.

Methods
Study participants
We studied three independent cohorts of n = 33, 47, and 
35 individuals respectively (n = 115 total). Participants in 
cohort 1 and cohort 3 were pre-classified as biomarker-
positive AD or biomarker-negative controls according to 
their neurochemical CSF biomarker profiles. Cohorts 1 
and 3 included 18 and 19 biomarker-positive AD partici-
pants respectively. There were 15 and 16 biomarker-neg-
ative controls from cohort 1 and cohort 3 respectively. 
Both cohorts were recruited from the Sahlgrenska Uni-
versity Hospital, Mölndal, Sweden. Cohort 2 included a 
set of paired plasma and serum samples collected from 
apparently healthy volunteers, ranging in age from 22 
to 69, collected with informed consent and in accord-
ance with the Declaration of Helsinki. EDTA-plasma 
and serum were collected in February and September 
2021, according to state-of-the-art recommendations 
[26]. Every blood draw was tested for infectious disease 
(HIV, HCV), and total protein, albumin, and hemoglobin 
concentrations were within the normal range for all 
individuals.

The AD participants in cohort 1 and cohort 3 were 
clinically assessed for suspected AD. The control partici-
pants had their core CSF biomarkers in normal ranges. 
CSF Aβ42, p-tau181, and total-tau were measured with 
the INNOTEST® β-AMYLOID (1-42), PHOSPHO-
TAU (181P), and hTAU Ag immunoassays as previously 
described [35], and the results were used to categorize 
participants into biomarker-negative controls and bio-
marker-positive AD. In both cohorts, biomarker positiv-
ity was established according to the following cut-offs: 
Aβ42 <530 pg/ml, total-tau >350 ng/ml, and p-tau181 >60 
pg/ml.

Blood and CSF sample collection and biochemical 
measurements
To study p-tau in plasma and serum from the same 
individuals, we collected whole blood by venipunc-
ture in cohort 1 and processed them concurrently 
into EDTA plasma and serum. We transferred 5-ml 
aliquots from the same blood draw into Vacuette® 
tubes (Greiner Bio-One) for serum and EDTA plasma 
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(catalogue numbers 456234 and 456243 respectively). 
Samples were processed following standard clinical 
chemistry procedures. In brief, the tubes were centri-
fuged within 2 h of collection at 2000×g for 10 min and 
stored at −80°C until use. Sample collection for cohort 
2 followed procedures according to the latest recom-
mendations described recently [26]. In cohort 3, serum 
samples were processed as described for cohort 1. CSF 
collection by lumbar puncture followed standard clini-
cal practices [36].

Prior to biomarker analysis, blood samples stored 
at −80°C were thawed, vortexed, and centrifuged at 
4000×g for 10 min. For cohort 1 and cohort 3, p-tau231 
and p-tau181 were measured in plasma (two-fold 
diluted), serum (two-fold diluted), and CSF (30-fold 
diluted) using validated in-house single molecule array 
(Simoa) methods [1, 5]. Briefly, the p-tau-specific 
mouse monoclonal antibodies ADx253 (ADx Neuro-
Sciences) and AT270 (Thermo Fisher) were used as 
capture for p-tau231 and p-tau181 respectively. Both 
assays used the N-terminal-targeting Tau12 (BioLe-
gend) antibody for detection. Quality control samples 
were analyzed in duplicates at the start and the end of 
each plate to assess precision. The within- and between-
run variations were respectively 0.6–12% and 2.1–12% 
for p-tau231, and 0.2–5.7% and 2.8–5.7% for p-tau181 
in cohort 1. For cohort 3, the within- and between-run 
variations were respectively 2.8–6.4% and 3.1–6.4% for 
p-tau231, and 1.7–5.3% and 2.5–5.3% for p-tau181. For 
serum p-tau231, four samples in cohort-1 and three 
samples in cohort-3 measured below the limit of detec-
tion. All p-tau181 measures were above the limit of 
detection. For each assay, identical batches of reagents 
were used for all matrix types to enable comparison of 
results. These measurements were performed at the 
Clinical Neurochemistry Laboratory, Sahlgrenska Uni-
versity Hospital, Mölndal, Sweden.

Paired plasma and serum samples from cohort 2 
were measured using the commercial  SimoaTM pTau-
181 Advantage V2 kit available from Quanterix (Bill-
erica, MA, USA). We used this method according to 
the manufacturer’s instructions to measure p-tau181 in 
paired plasma and serum samples from n=47 individu-
als. All 94 quantifications were performed in duplicate 
in one run and variability of the two run controls and its 
assigned values were in the expected ranges (control 1 
range 2.5–3.7 pg/ml with a within-run variation of 3.5% 
for a concentration of 2.9 pg/ml; control 2 with expected 
concentration range from 92 to 138 pg/ml had a meas-
ured concentration of 117.7 pg/ml with within-run varia-
tion of 0.7%). For serum p-tau181, one sample measured 
below the limit of detection. These measurements were 
performed at ADx NeuroSciences, Ghent, Belgium.

Statistical analyses
Statistical analyses were performed with Prism version 9 
(GraphPad, San Diego, CA, USA). Non-parametric tests 
were used for non-normally distributed data. Continu-
ous and categorical variables were evaluated with Spear-
man correlation and χ2 test respectively. Mann-Whitney 
test was used for group comparisons, and area under the 
receiver operating characteristics curve (AUC) to esti-
mate diagnostic performance. Fold changes were calcu-
lated by dividing p-tau concentrations by the mean data 
for the control group. Bland-Altman plots were made to 
assess agreement of the p-tau measurements in paired 
serum and plasma [37]. The 95% limits of agreement 
(LOA) were estimated by calculating the mean ± 2 stand-
ard deviations. For all statistical analyses, significance 
was set at two-sided p<0.05.

Results
Cohort characteristics
Cohort 1 included 15 females and 18 males, with a dis-
tribution of 33.3% and 55.5% females among the con-
trols and AD groups, respectively. The mean age was 
67.3±9.1 years for controls and 77.4±5.8 years for AD 
(Mann Whitney U=48, P=0.0011). Cohort 2 included 
47 individuals (27 female, 20 male) between the ages of 
20 and 69 years. In cohort 3, there were 20 females and 
15 males with comparable distributions between groups. 
The mean age was 66.6±12.3 years, without inter-group 
differences; 65.5±15.3 years for controls and 67.7±8.6 
years for AD (Mann Whitney U=199.5, P=0.9947). The 
demographic characteristics are summarized in Table 1.

Diagnostic performance of serum vs. plasma p‑tau
We compared the performance of p-tau231 and p-tau181 
when measured in paired serum vs. plasma samples col-
lected from the same blood draw in identical individu-
als in cohort 1. P-tau231 concentrations ranged from 0.8 
to 13.2 pg/ml in serum and 3.3 to 24.4 pg/ml in plasma. 
When comparing within-individual levels, p-tau231 con-
centrations were twice higher in plasma (mean = 10.1 pg/
ml) vs. in serum (mean = 4.6 pg/ml) for the whole cohort 
(P<0.0001). When measured in plasma or serum, mean 
p-tau231 levels were at least twice higher in biomarker-
positive AD vs. biomarker-negative controls (Fig.  1 and 
Table 1).

For p-tau181, the biomarker ranges were 2.1–18.1 
pg/ml in serum vs. 3.4–19.1 pg/ml in plasma. Within-
individual p-tau181 levels were not statistically differ-
ent between plasma vs. serum for the whole of cohort 1 
despite marginally higher levels in plasma (mean = 7.1 
pg/ml for serum and 8.3 pg/ml for plasma, P = 0.2333). 
Serum (mean=9.3 pg/ml vs. 4.5 pg/ml; P<0.0001) and 
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plasma (mean=10.4 pg/ml vs. 5.8 pg/ml; P=0.0003) 
p-tau181 were each increased twofold in biomarker-
positive AD vs. biomarker-negative controls (Fig.  1 and 
Table 1). Similar results were found in cohort 2, using the 
commercial Quanterix kit. P-tau181 concentrations were 
twice higher in plasma vs. paired serum (mean= 1.1 pg/
ml vs. 0.6 pg/ml; P<0.0001, Table 1).

In cohort 1, p-tau231 demonstrated high perfor-
mance to separate the two groups whether measured in 
serum (AUC=88.2%, 95% CI=75.3–100%) or plasma 
(AUC=90.2%, 95% CI=79.1–100.0%). For p-tau181, the 
diagnostic performances were 89.6% (95% CI=78.5–
100.0%) in serum and 85.4% (95% CI=71.6–99.2%) in 
plasma (Fig. 1).

Validation of the diagnostic value of serum p‑tau231 
and p‑tau181 in an independent cohort
We further validated the diagnostic performance of 
serum p-tau in an independent cohort by performing 
paired measurements of p-tau231 and p-tau181 in both 
serum and CSF collected at the same clinical visit for each 
participant in cohort 3 (Table 1). Serum p-tau231 in bio-
marker-positive AD (mean = 3.8 pg/ml) was three-times 
higher than in biomarker-negative controls (mean=1.1 
pg/ml; P=0.0008; Fig.  2A). For p-tau181, a fold change 
of four was observed in this cohort: mean concentrations 
of 10.1 pg/ml for biomarker-positive AD and 2.5 pg/
ml for biomarker-negative controls (P<0.0001; Fig.  2B). 

Moreover, both serum p-tau231 and p-tau181 differenti-
ated between the two groups with AUCs of 82.2% (95% 
CI=68.2–96.3%) and 89.8% (95% CI=79.2–100%) respec-
tively (Fig. 2C).

Results from paired CSF samples suggest brain origin 
of serum p‑tau
To evaluate that the serum results reflect brain-derived 
p-tau, we compared the p-tau biomarkers in paired serum 
and CSF samples from identical participants in cohort 3 
using the same assay definition on the Simoa technology 
used for both blood matrices, at the appropriate dilu-
tion factors. CSF p-tau231 concentrations in biomarker-
positive AD (mean = 777.9 pg/ml) were fivefold higher 
compared with biomarker-negative controls (mean = 
154.4 pg/ml, P<0.0001; Table 1). Similarly, CSF p-tau181 
was approximately five times increased in biomarker-
positive AD (mean = 895.8 pg/ml) vs. in biomarker-neg-
ative controls (mean =176.4 pg/ml; P<0.0001). Assuming 
that serum p-tau reflects the same pool of brain-secreted 
p-tau as in CSF, we estimated the fraction of CSF p-tau 
released into serum. P-tau231 in serum was a small frac-
tion of paired CSF concentrations without differences in 
normal aging and disease (0.8% in controls and 0.6% in 
AD; P=0.4814). Despite being similarly small (less than 
2%) and reflecting similarly in diseased and control par-
ticipants, the CSF-to-serum fraction for p-tau181 was 

Table 1 Demographic characteristics of the study participants

Biomarker and age differences were tested using Mann-Whitney test

Biomarker concentrations are shown as mean ± standard deviation (SD)

Note that p-tau measurements were performed with different methods in cohorts 1 and 3 (validated in-house assays) vs. cohort 2 (commercial kit from Quanterix)

N/A, not available
a Significant difference compared with controls

Cohort 1 Cohort 2 Cohort 3

Biomarker‑
negative 
controls

Biomarker‑positive AD Control individuals Biomarker‑
negative 
controls

Biomarker‑positive AD

Sample size 15 18 47 16 19

Age, y 67.3 ± 9.1 77.4 ± 5.8a 45,9 ± 15,2 65.5±15.3 67.7±8.6

Gender, F, n (%) 5/15 (33.3%) 10/18 (55.5%) 27/47 (57.4%) 10/16 (62.5%) 10/19 (52.6%)

CSF Aβ42, pg/ml 1002.0 ± 286.6 450.9 ± 67.9a N/A 877.2 ± 160.7 499.4 ± 87.0a

CSF total‑tau, pg/ml 262.0 ± 81.0 773.7 ± 406.9a N/A 209.2 ± 61.2 577.3 ± 136.1a

CSF p‑tau181 (Innotest), pg/ml 42.5 ± 12.7 91.2 ± 26.2a N/A 28.4 ± 8.0 88.9 ± 23.7a

CSF p‑tau181 (Simoa), pg/ml N/A N/A N/A 176.4 ± 57.3 895.8 ± 350.9a

CSF p‑tau231 (Simoa), pg/ml N/A N/A N/A 154.4 ± 49.4 777.9 ± 260.8a

Plasma p‑tau231, pg/ml 6.5 ± 3.4 13.4 ± 5.2a N/A N/A N/A

Plasma p‑tau181, pg/ml 5.8 ± 2.8 10.4 ± 4.1a 1.1 ± 0.4 N/A N/A

Serum p‑tau231, pg/ml 2.5 ± 2.3 6.4 ± 2.7a N/A 1.1 ± 1.1 3.8 ± 4.3a

Serum p‑tau181, pg/ml 4.5 ± 2.0 9.3 ± 3.4a 0.6 ± 0.3 2.5 ± 2.2 10.1 ± 10.4a
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double the value recorded for p-tau231 (1.5% for controls 
vs. 1.5% for AD; P=0.4032).

Associations between blood p‑tau and with CSF 
biomarkers
In cohort 1 and cohort 2, we recorded significant 
(P≤0.0001) correlations (rho=0.75-0.92) between all 
blood biomarkers (Figs.  3 and 4). Strong correlations 

of serum p-tau231 and p-tau181 were observed 
(rho=0.92, P<0.0001; Fig.  3), so were both biomark-
ers in plasma (rho= 0.88, P<0.0001) in cohort 1. 
For between-matrix correlations for the same bio-
marker, p-tau231 in serum was strongly corre-
lated with plasma p-tau231 (rho=0.89, P<0.0001). 
Moreover, serum p-tau181 showed a strong corre-
lation with plasma p-tau181 (rho=0.82, P<0.0001). 

Fig. 1 Profile of serum vs. plasma p‑tau in paired samples from neurochemically defined biomarker‑positive AD vs. biomarker‑negative controls 
in cohort 1. A, B Boxplots of the concentrations of p‑tau231 and p‑tau181 in serum and plasma respectively. C The diagnostic performance of 
p‑tau231 and p‑tau181 in the paired plasma and serum samples, estimated using area under the curve (AUC) calculations
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Serum p-tau231 correlated with the INNOTEST 
CSF p-tau181 (rho=0.55; P=0.0009) and total-tau 
(rho=0.65; P<0.0001). Serum p-tau181 associated with 
the INNOTEST CSF p-tau181 (rho=0.53; P<0.002) 
and total-tau (rho= 0.63; P<0.0001). Inverse associa-
tions were recorded for each of serum p-tau231 (rho= 
−0.56; P=0.0007) and serum p-tau181 (rho= −0.59; 
P=0.0003) vs. CSF Aβ42. Figure 3 shows Spearman cor-
relations between the blood p-tau markers as well as 
with the core AD biomarkers in CSF.

In cohort 3, serum p-tau231 and p-tau181 were 
highly correlated (rho=0.93, P<0.0001; Table 2). More-
over, serum p-tau231 showed significant correlations 

with CSF p-tau231 (rho=0.56; P=0.0004), and CSF 
p-tau181 measured by Simoa (rho=0.57; P=0.0003) 
and INNOTEST (rho=0.55; P=0.0006). Serum 
p-tau231 also correlated negatively with CSF Aβ42 
(rho= −0.55; P=0.0006) and positively with total-tau 
(rho=0.62; P<0.0001). Similarly, serum p-tau181 cor-
related with CSF p-tau231 (rho=0.70, P<0.0001), CSF 
p-tau181 Simoa (rho=0.71, P<0.0001), and INNOTEST 
p-tau181 (rho= 0.67; P<0.0001). Additionally, p-tau181 
in serum was associated positively with total-tau (rho= 
0.73; P<0.0001) and inversely with Aβ42 (rho= −0.67; 
P<0.0001) in CSF. Table 2 shows Spearman correlation 
between each of serum p-tau231 and p-tau181 with 
CSF biomarkers.

Fig. 2 Concentrations and diagnostic performance of serum p‑tau231 and p‑tau181 in biomarker‑positive AD vs. biomarker‑negative controls in 
cohort 3. A, B Serum p‑tau231 and p‑tau181 levels respectively in controls and AD, expressed in pg/ml. C Area under the curve (AUC) performances 
of serum p‑tau231 and p‑tau181 to separate AD from age‑matched controls
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Equivalence of paired p‑tau concentrations in serum vs. 
plasma
Bland-Altman plots showed mean differences of 15.3% 
(95% LOA = −40.8 to 71.5%) and 64.9% (95% LOA = 
−1.1 to 130.8%) for the serum-plasma p-tau181 pairs in 
cohort 1 and cohort 2 respectively. Similar results were 
obtained for p-tau231 in cohort 1: mean difference of 
84%, 95% LOA = 20.1–148.0% (Fig. 4). Overall, the rela-
tive difference was highest in the lower concentration 
range of p-tau231 in cohort 1, and p-tau181 in cohort 2.

Discussion
The results of this pilot study showed that serum may 
be a viable blood matrix for the assessment of the novel 
p-tau231 AD biomarker that has recently been verified 
for use in plasma [5, 9, 22, 23, 34]. Increases in serum 
p-tau231 discriminated between biomarker-positive 
AD vs. biomarker-negative controls with AUCs of up 
to 88.2%, equivalent to 90.2% for plasma. Moreover, we 
extended earlier results that plasma p-tau181 is meas-
urable in serum [1, 24, 26, 29], demonstrating that diag-
nostic performance is similarly high when measured in 
serum or plasma (89.6% and 89.8% vs. 85.4%). We further 
validated the utility of serum p-tau231 and p-tau181 by 

showing (i) similar correlations vs. the same biomarkers 
measured in paired plasma samples and (ii) significant 
correlations with biomarkers measured in CSF samples 
from the same individuals. Together, the results sug-
gest that p-tau biomarkers in serum reflect brain patho-
physiological changes and may be employed to support 
clinical and research-based evaluation of AD. Nonethe-
less, we recorded biases of 15–84% between the absolute 
concentrations of paired p-tau measures to suggest that 
biomarker levels are not interchangeable between serum 
vs plasma. Furthermore, the consistently lower absolute 
concentrations of p-tau231 in serum compared with 
plasma may pose analytical challenges that need address-
ing especially for Aβ-negative individuals, as illustrated in 
the lower concentration ranges, where the relative differ-
ences between the two matrices were larger (Fig. 4D–F).

Blood p-tau biomarkers have been validated in EDTA 
plasma to show excellent diagnostic and analytical per-
formances [1, 2, 5, 22, 23, 34, 38], but their utility in 
other blood matrices is unclear. In the present study, we 
have demonstrated that the biomarker performances of 
plasma p-tau231 and p-tau181 are replicable in serum, 
expanding the repertoire of blood matrix types that are 
suitable for evaluating these biomarkers. Additionally, 

Fig. 3 Heatmap of Spearman correlation between blood and CSF biomarkers in cohort 1. The figure shows correlation of plasma and serum p‑tau 
between themselves and with the core CSF biomarkers (Aβ42, p‑tau181, total‑tau) in cohort 1. The heatmap shows a color gradient of −1.0 (red; 
strongest inverse correlation) to 1.0 (blue; strongest positive correlation)
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p-tau231 and p-tau181 correlated strongly with each 
other when measured in serum, plasma, and CSF, dem-
onstrating corresponding elevations of both biomarkers 
in AD that are quantifiable in multiple bodily fluids [5, 10, 
31]. Notably, there were similar correlations of p-tau231 

and p-tau181 when both were measured in serum (rho = 
0.92) vs. in plasma (rho = 0.88) in cohort 1. Additionally, 
the serum-based correlation of p-tau231 and p-tau181 in 
cohort 3 (rho = 0.93) was similarly as high as in cohort 
1. The serum biomarker correlations in each cohort were 
stronger than previous results in plasma (rho = 0.6) [5].

While there were strong correlations between paired 
serum and plasma p-tau levels and either modal-
ity accurately differentiated between AD and controls, 
Bland-Altman plots support a bias in serum vs. plasma 
concentrations in paired samples, with the disagreements 
being higher at lower average values. This is explained 
by the observed differences in absolute levels of p-tau 
measures in paired samples from the same individuals. 
For example, paired p-tau231 levels were twofold higher 
in plasma compared with serum in cohort 1. Similarly, 
p-tau181 levels were higher in plasma vs. serum in both 
cohorts 1 and 2, although these differences reached sta-
tistical significance only in cohort 2. These consistently 
lower p-tau concentrations in serum vs. in plasma are in 
agreement with recent reports for p-tau181 and total-tau 

Fig. 4 Correlations and biases in paired serum vs. plasma p‑tau concentrations. A–C Spearman correlation (rho) of serum vs. plasma p‑tau 
concentrations in paired samples. The plots show correlations for p‑tau181 in cohort 1 (A), p‑tau231 in cohort 1 (B), and p‑tau181 (using the 
commercial Quanterix kit) in cohort 2 (C). Bland‑Altman plots for the same sample pairs are shown in D–F, respectively. The y‑axes display the 
individual differences (serum subtracted from plasma)/average of the two, whereas the x‑axes display the mean of the two. For each plot, the top 
and bottom horizontal lines show the 95% limit of agreement while the middle horizontal line shows the estimated bias

Table 2 Spearman correlation of serum p‑tau231 and p‑tau181 
with CSF biomarkers in cohort 3

Serum p‑tau231 Serum p‑tau181

CSF Aβ42, pg/ml rho= ‑0.55; P=0.0006 rho= ‑0.66; P<0.0001

CSF total‑tau, pg/ml rho=0.62; P<0.0001 rho= 0.73; P<0.0001

CSF p‑tau181 (Innotest), 
pg/ml

rho=0.55; P=0.0006 rho= 0.67; P<0.0001

CSF p‑tau181 (Simoa), 
pg/ml

rho=0.57; P=0.0003 rho= 0.71; P<0.0001

CSF p‑tau231 (Simoa), 
pg/ml

rho = 0.56; P=0.0004 rho= 0.70; P<0.0001

Serum p‑tau231, pg/ml ‑ rho=0.93, P<0.0001

Serum p‑tau181, pg/ml rho=0.93, P<0.0001 ‑
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[1, 24, 26]. Thus, we propose that the measured concen-
trations of plasma and serum p-tau biomarkers are not 
interchangeable despite values in either matrix show-
ing strong correlations and excellent diagnostic perfor-
mances. In effect, it is important to use either plasma or 
serum samples independently for an entire study, includ-
ing longitudinal monitoring, without switching between 
matrix types.

Translation of our results that serum is equally good for 
blood-based p-tau analyses as plasma will require care-
ful standardization of how whole blood is processed into 
serum. At present, the standard operation procedures 
for serum generation are somewhat vague and are likely 
to vary between hospital systems and research institu-
tions. For instance, most manufacturers recommend that 
whole blood should be incubated at room temperature 
for 30 min to 1 h to form clots that separate the liquid 
fraction from cellular components. Deviating from these 
recommendations can have consequences. For instance, 
removal of cellular elements from the liquid portion is 
less complete in samples incubated for less than 30 min 
[39]. Additionally, samples incubated or transported for 
over 60 min tend to experience cell lysis to release cel-
lular materials that are not usually found in serum [39]. 
For patients or research participants known to be on 
anticoagulant treatments, longer incubation period may 
be necessary for clot formation. Standardization of pre-
analytical factors (e.g., time of clotting, centrifugation, 
and aliquoting) between and within studies is important 
to ensure reproducibility of p-tau results collected using 
serum samples.

Furthermore, p-tau measurements in serum are likely 
to result in more values below the lower limit of quanti-
fication of several p-tau assays given the lower biomarker 
concentrations in this matrix versus EDTA-plasma. 
Potential disadvantages include challenges in differen-
tiating cognitively normal individuals with preclinical 
evidence of AD from those without since the biomarker 
levels between these groups tend to be marginally differ-
ent [19].

Assuming that p-tau secreted to serum is a fraction 
of the same pool of p-tau molecules that are secreted to 
the CSF from the brain, we estimated that <1% of CSF 
p-tau231 concentrations reflect in serum, with compa-
rable results found for p-tau181 (<2%) in cohort 2. The 
similarities in CSF-to-serum fractions between controls 
and AD suggest that p-tau transport/release between 
CSF and blood in normal aging remains unchanged in 
AD. These results are also in agreement with our previ-
ous finding of 5% CSF to plasma fraction [1].

CSF Aβ42/Aβ40 is an early AD biomarker, often becom-
ing abnormal ahead of Aβ-PET [40]. The accessibility, 
cost-effectiveness, and simplicity advantages of blood 

make it a highly attractive biofluid for clinical chemistry 
evaluation of biological changes in disease. Hence, iden-
tifying a blood-based biomarker that performs closely to 
CSF Aβ42/Aβ40 for brain amyloidosis is crucial to enable 
large-scale screening in population and epidemiological 
studies for potential preclinical AD candidates for inclu-
sion in anti-amyloid therapeutic trials. This is made even 
more relevant and urgent by the recent approval of the 
anti-amyloid drug Aduhelm® and the ongoing considera-
tion of other promising candidate drugs by the FDA [41]. 
However, measuring Aβ in blood is analytically challeng-
ing due to small dynamic ranges even when measured 
with immunoprecipitation-mass spectrometry (IPMS) 
assays [19]. This challenge is even more acute in serum 
where concentrations are much lower, correlate poorly 
with plasma Aβ, and are sensitive to freeze-thaw cycling 
[24, 26]. It has therefore been recently recommended 
that serum be avoided for blood Aβ measurements due 
to unreliable results [24]. Even in plasma, some immuno-
assay methods have poor performance while IPMS tech-
niques that have superior diagnostic utility are time- and 
resource-intensive [18, 42]. While plasma IPMS Aβ can 
sometimes detect amyloidosis equally or slightly better 
than plasma p-tau particularly in preclinical AD [7], cur-
rent technical difficulties limit its throughput and wide-
spread adoption [17, 18]. Moreover, plasma p-tau217, 
which has shown substantial potential for brain amyloi-
dosis in blood and CSF [2, 10, 31, 43], is currently only 
reliably measurable in plasma; quantification in serum 
looks less promising given very low concentrations even 
in plasma, often below the detection limit [2, 44–46]. 
Since plasma p-tau biomarker levels in preclinical AD are 
only marginally increased compared with biomarker-neg-
ative controls [1, 2, 6–8, 10, 11, 32], robust and reproduc-
ible measures are essential. Together, there is presently a 
limited toolbox of accessible blood biomarkers to screen 
for and to longitudinally monitor preclinical AD partici-
pants undergoing clinical trials. To this end, we reported 
that plasma p-tau231 starts to increase in the “pre-
amyloid phase” before Aβ-PET abnormality thresholds 
are reached [5]. Furthermore, plasma p-tau231 outper-
formed plasma p-tau181 and CSF p-tau217 for preclini-
cal AD, for which reason plasma p-tau181 performed 
better at separating AD dementia and Aβ+ cognitively 
unimpaired elderly [5]. The slightly  lower diagnostic 
accuracy of serum p-tau231 for AD vs. controls com-
pared with p-tau181 in the present study seems to rep-
licate the preclinical capacity of p-tau231 in brain, CSF, 
and plasma [5, 10, 31, 47], since the biomarker-negative 
control group most likely included those with emerging 
AD pathology. A significant finding in the present study 
is that by showing that p-tau231 has good performance 
in serum that match its demonstrated performance as an 
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early amyloid marker in plasma, we show that the field 
can expand blood p-tau analyses to include matrices like 
serum which is preferred in some medical centers and 
clinical studies.

Major strengths of this study include the evaluation 
of p-tau231 and p-tau181 in paired plasma and serum 
(cohorts 1 and 2) as well as paired serum and CSF (cohort 
3) samples, providing insights into p-tau levels in the 
central nervous system and the periphery. Moreover, we 
used two variations of the same p-tau181 method, the 
in-house Gothenburg p-tau181 assay and its commer-
cially adapted variant available from Quanterix, meaning 
that the results obtained herein can be verified in other 
cohorts or research settings with access to the commer-
cial Simoa method.

Limitations
The study had a decent sample size, given inherent dif-
ficulties to obtain paired samples provided at the same 
patient visit. Future studies should verify the results in 
larger cohorts and determine any relevant diagnostic 
advantages or disadvantages between plasma and serum. 
Regrettably, the small sample size and a lack of CSF Aβ42/
Aβ40 or Aβ-PET data prevented in-depth analyses of the 
diagnostic performance of serum p-tau231 in preclinical 
AD.

Conclusion
Serum p-tau231 and p-tau181 showed good perfor-
mances for diagnostic and research purposes but the for-
mer was at lower concentrations than what was observed 
for the same biomarker in paired plasma samples. Signifi-
cant increases of serum p-tau231 and p-tau181 in bio-
marker-positive AD vs. biomarker-negative controls and 
the strong intra- and inter-matrix correlations between 
themselves and with other biomarkers agree with previ-
ous results in plasma and CSF, authenticating feasibil-
ity of p-tau assessments in serum. Together, our results 
suggest that serum is a viable matrix for p-tau analysis, 
for both p-tau181 and p-tau231, providing a practical 
alternative to plasma especially in hospitals and research 
cohorts that prefer serum to other blood matrices. These 
results should be validated in independent cohorts and 
for different p-tau assays.
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