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Abstract 
 

Forest degradation accounts for ~ 70% of total carbon losses from tropical forests. Substantial 
emissions are from selective logging, a land-use activity that decreases forest carbon density. To 
maintain carbon values in selectively logged forests, climate change mitigation policies and 
government agencies promote the adoption of reduced-impact logging (RIL) practices. 
However, whether RIL will maintain both carbon and timber values in managed tropical forests 
over time remains uncertain. In this study, we quantify the recovery of timber stocks and 
aboveground carbon at an experimental site where forests were subjected to different intensities 
of RIL (4 trees ha-1, 8 trees ha-1, and 16 trees ha-1). Our census data spans 20 years post-logging 
and 17 years after the liberation of future crop trees from competition in a tropical forest on the 
Guiana Shield, a globally important forest carbon reservoir. We model recovery of timber and 
carbon with a breakpoint regression that allowed us to capture elevated tree mortality 
immediately after logging. Recovery rates of timber and carbon were governed by the presence 
of residual trees (i.e., trees that persisted through the first harvest). The liberation treatment 
stimulated faster recovery of timber albeit at a carbon cost. Model results suggest a threshold 
logging intensity beyond which forests managed for timber and carbon derive few benefits from 
RIL, with recruitment and residual growth not sufficient to offset losses.  Inclusion of the 
breakpoint at which carbon and timber gains outpaced post-logging mortality led to high 
predictive accuracy, including out-of-sample R2  values >90%, and enabled inference on 
demographic changes post-logging. Our modeling framework is broadly applicable to studies 
that aim to quantify impacts of logging on forest recovery. Overall, we demonstrate that initial 
mortality drives variation in recovery rates, that the second harvest depends on old growth wood, 
and that timber intensification lowers carbon stocks. 

 
Keywords: carbon stocks; tropical forestry; sustainable forest management; REDD+; forest degradation; climate 
change mitigation; piecewise regression 
 
 

Introduction 
 
Sustainable forest management (SFM) through careful selective logging is advocated as a simultaneous means to 
provide timber, protect biodiversity, and reduce carbon emissions from tropical forests. The technical forestry 
guidelines that form the basis of SFM generally include use of reduced-impact logging (RIL) practices designed to 
reduce deleterious environmental impacts, sustain timber yields, and improve efficiency of logging operations (e.g., 
Boltz et al., 2003; Putz et al., 2008, 2012). RIL guidelines typically cover a suite of activities that emphasize strict 
planning and control of logging operations as well as training of forest workers (Hendrison, 1990; Pinard et al., 1995; 
Dykstra & Heinrich, 1996; Van der Hout, 1999; Sist, 2000; Dykstra, 2001). Given that due to anthropogenic forest 
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disturbance, tropical forests are a net carbon source (Baccini et al., 2017), and given that most of the world’s remaining 
tropical forests are subjected to logging (Pearson et al., 2017), efforts to reduce carbon emissions from forestry 
activities are of global importance (Houghton et al., 2015). 
 
RIL guidelines typically include: (1) pre-harvest tree inventories and topographic mapping; (2) pre-felling vine 
cutting; (3) directional felling; and, (4) controls on the lengths, widths, layout, and use of pre-planned skid trails and 
logging roads. Use of these practices reduces both the spatial extent and severity of logging impacts (e.g., Asner et 
al., 2004; Edwards et al., 2014; Arevalo et al., 2016; Vidal et al., 2016). More specifically, application of RIL practices 
reduces soil damage (Pinard et al., 1995; Sist, 2000), biodiversity loss (Bicknell et al., 2015; Roopsind et al., 2017a), 
hydrological disruption (Douglas, 1999; Miller et al., 2011), and carbon emissions (e.g., Pinard & Putz, 1996) relative 
to unplanned or conventional logging. Post-logging recovery rates of timber and carbon stocks are also reportedly 
faster after RIL than after conventional logging (Lussetti et al., 2016; Vidal et al., 2016). 
 
Advocates of RIL are now challenged to define timber harvest intensity thresholds that maintain timber and carbon 
values over multiple harvest cycles (Wadsworth & Zweede 2006; Zimmerman & Kormos 2012). If timber and carbon 
values do not recover under economically viable harvest intervals, these managed forests become vulnerable to 
conversion  for more intensive land uses, with all their associated carbon emissions (Asner et al., 2006). For these 
reasons, it is important to quantify thresholds of logging intensity beyond which benefits of RIL are lost. If 
intensification of forest management is pursued to maintain timber yields across harvest rotations (Putz et al., 2012; 
Ruslandi et al., 2017), such as the liberation of future crop trees, it also becomes important to quantify tradeoffs 
between timber and carbon values. 
 
For a forest on the Guiana Shield, we compare the rates of recovery of timber and aboveground carbon stocks (ACS) 
for the first 20 years after RIL across different logging intensities. We also assess the timber-carbon tradeoffs that 
result from the liberation of future crop trees (FCTs; well-formed trees of commercial species smaller than the 
minimum cutting diameter). The Guiana Shield region is unique in that it is one of the last intact contiguous blocks of 
tropical forests globally, and distinct from Amazonia forests due to its ancient and nutrient-poor soils, slower 
ecological dynamics, and higher carbon stocks (ter Steege et al., 2006; Johnson et al., 2016; Piponiot et al., 2016). 
We monitored trees ≥ 5 cm DBH from 1993 to 2013 in replicated plots subjected to RIL at one of three logging 
intensities, with a fourth treatment that included a post-harvest liberation treatment of FCTs after moderate intensity 
harvest (RIL-moderate + liberation; Table 1). This range of experimental treatments enabled us to go beyond simple 
comparisons of RIL and conventional logging and to quantify logging intensity thresholds for sustainable timber 
production with RIL. More generally, we can evaluate the role of logged forests as carbon stores and examine the 
tradeoffs between timber and carbon values with the use of liberation treatments to favor timber production. 
 
We used our plot-level observations of timber stocks and ACS to evaluate the effect of logging intensity on residual 
tree mortality and recovery with a piecewise linear regression (broken-stick model; Bourgeois et al., 2016). The 
structure of the piecewise regression can accommodate our theoretical expectation of post-logging demographic 
changes that result in non-linear biomass dynamics at the stand level (Piponiot et al., 2016). These demographic 
changes include elevated mortality rates for a few years after logging followed by increased rates of tree growth and 
recruitment presumably due to reduced competition and increased sunlight penetration after canopy disturbance (Sist 
& Nguyen-Thé, 2002; Blanc et al., 2009; Shenkin et al., 2015; Ruslandi et al., 2017). How these demographic changes 
interact with different logging intensities is an open question with fundamental implications for the forest dynamics 
that determine carbon stocks and the sustainability of timber harvests. For example, if slow recovery is a consequence 
of high mortality immediately after logging, implementation of RIL practices at low harvest intensities may be most 
effective. However, if slow recovery is a consequence of low rates of tree growth after logging, more intensive forest 
management practices such as liberation thinning to encourage tree growth by reducing neighborhood competition 
may be most effective. By simultaneously estimating both the timing of the breakpoint and effects of logging before 
and after the breakpoint, we were able to propagate uncertainty in breakpoint location through to model predictions 
(Beckage et al., 2007). 
 
We hypothesized that increasing logging intensity both increases losses of ACS during the first several years after 
logging and induces faster regrowth during the subsequent period. We predict that at a certain threshold logging 
intensity, depletion of forest ACS outweighs the longer-term gains associated with faster recovery rates. With respect 
to timber stock recovery, we predict that high logging intensities not only deplete commercial stocks of old growth 
trees but also result in higher competition between the scattered survivors of commercial species and the non-
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commercial species that recruit after severe forest disturbance (Villegas et al., 2009). FCT liberation is expected to 
reduce this competition and accelerate timber stock recovery but at the cost of forest carbon. We also expect the 
piecewise model to improve our ability to predict timber and carbon recovery post-logging, relative to linear models 
that do not capture the two distinct demographic phases. 
 

Materials and Methods 
 
Study Site 
 
Our data are from a long-term study in Central Guyana (5º 02՝ N, 58º 37՝ W; Fig S1) established in 1993 by Van der 
Hout (1999) under the Tropenbos-International sustainable forest management and conservation research program 
(http://www.tropenbos.org/). The research site is within an active timber concession, Demerara Timbers Limited 
(DTL), at elevations of 50-100 m above-sea-level on undulating sedimentary plains with slopes mostly < 20%. The 
forest grows on old and quartz-rich soil derived from Cretaceous sediments on the Precambrian Guiana Shield; these 
soils are extremely poor compared to those of western Amazonia (Hammond, 2005; Quesada et al., 2010). There are 
also clear differences in forest structure, floristic composition, and ecological processes between forests in Amazonia 
and on the Guiana Shield, with the latter characterized by higher carbon stocks and rates of wood production, higher 
wood densities, bigger seeds, and more dominance by species of Fabaceae (Malhi et al., 2004; ter Steege et al., 2006; 
Johnson et al., 2016). 
 
The evergreen tropical forest of the study area receives 2772 mm of precipitation per year with dry seasons in March-
April and September-November, but on average no month receives <60 mm of rain (Van Dam 2001). The average 
canopy height is 30 m with emergent trees to 40-50 m (Vanmechelen, 1994). Prior to logging in 1993, density of stems 
≥ 10 cm DBH (diameter measured at 1.3 m or above buttresses) in unlogged forests was 476 stems ha-1 (SE ± 19; N 
= 15, 1.96 ha plots), with species composition that varied with local soil characteristics, topographic position, and 
water availability (Ter Steege et al., 1993; Van der Hout, 1996). Approximately 10% of tree species produce large 
buttresses, palms are sparse and mostly confined to the understory, and lianas >2 cm DBH are estimated at 453 stems 
ha-1 (Zagt et al., 2003). In unlogged forest, the crowns of 9% of trees ≥ 20 cm are liana-covered. There were no signs 
of previous logging but soil charcoal indicates scattered small-scale fires a century prior to our study (Hammond & 
Ter Steege, 1998). 
 
Chlorocardium rodiei (greenheart) and Lecythis confertiflora (wirimiri kakaralli) frequently dominate the forest 
canopy layer with Licania spp. (kautaballi), Swartzia leiocalycina (wamara), and Catostemma fragans (sand 
baromalli) as prevalent co-dominants. In some parts of the research site, particularly uphill of gullies and on lateritic 
soils, Mora gongrijpii (morabukea) dominates while Carapa spp. (crabwood) and Pentaclethra macroloba (trysil) are 
common on wetter soils. Among the emergent species, Peltogyne venosa (purpleheart) and Hymenaea courbaril 
(locust) are the most common and have high commercial timber value. Prevalent understory species are Oxandria 
asbeckii (karishiri), Tapura guianensis (waiaballi), and Paypayrola spp. (adebero). 
 
Experimental Design and Logging Treatments 
 
The RIL experimental guidelines used in our study were based on the CELOS Harvest System developed in Suriname 
(Hendrison, 1990; Jonkers & Hendrison, 2011) and included: pre-harvest mapping of trees of commercial species with 
good stem form ≥20 cm DBH; selection of trees for harvest to avoid the creation of large canopy openings; and, limits 
on per species harvest intensities that reflect their respective abundances (Van der Hout, 1999). Minimum felling 
diameters were species-specific with harvested trees needed to contain > 6 m of defect-free log. All lianas ≥ 2 cm 
DBH on trees selected for harvest were cut 6 months prior to the felling operation to reduce residual stand damage; 2 
years after logging, lianas on FCTs were cut in the liberation treatment only. Directional felling was carried out (in 
order of priority) to promote worker safety, to minimize damage to the bole of the felled tree, and to aid extraction 
based on techniques described by Conway (1982) and Brunberg et al. (1994). All fellers were trained and used STIHL 
AV66 chainsaws. Planned skid trails were constructed in a herringbone pattern to minimize skidding distances, with 
no skidding on slopes >20%, downhill, or across streams and gullies. Skid trails were generally straight, spaced 80 m 
apart, and established with a CAT 528 wheeled skidders equipped with a winch, cable arch, and 35 m of winch line; 
winching distances averaged 12.2 m (sd = 8.2 m, n = 163). 
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The study employed a randomized block design with:  low intensity (4 trees ha-1/16 m3 ha-1); moderate intensity (8 
trees ha-1/24 m3 ha-1); high intensity (16 trees ha-1/48 m3 ha-1); and, moderate-intensity logging followed three years 
later by a post-harvest liberation of FCTs (more detail provided below; Van der Hout 1999, 2000; Table 1 & Table 
S1). Each treatment was replicated three times in 5.76 ha (240 x 240 m) plots with a centrally located 1.96 ha (140 x 
140 m) plot for long-term monitoring. In addition to the logged and liberation-treated plots, unlogged stand dynamics 
were monitored in control plots in each of the three blocks. Trees ≥20 cm DBH (stem diameter at 1.3 m or above 
buttresses) were recorded in the 1.96 ha experimental sample plots, with twenty-five nested 10 x 10 m subplots used 
to census trees 5-20 cm DBH (Appendix S1: Figure S1). To enable the experimental logging treatments, blocks with 
high timber stocking were selected. 
 
All plots were first censused in 1993 (pre-logging) and then the twelve experimental harvest units were logged in 
1994. Future crop trees (FCTs), defined as trees 20-40 cm DBH of commercial species and good form, were liberated 
in 1996 by cutting all impinging lianas and poison-girdling taller non-commercial trees and defective commercial 
species overtopping the FCT and within 10 m radius of its base. Plots were re-censused approximately one (1995), 
three (1997), six (2000), and twenty years (2013) after logging occurred in 1994; and one (1997), four (2000), and 
seventeen (2013) years after the 1996 liberation treatment. At each census, tree diameters, mortality, and recruitment 
were recorded, along with the apparent cause of mortality; each tree was also assigned a timber grade that reflects 
commercial utilization potential. 
 
Aboveground Carbon Stocks (Mg C ha-1) 
 
To estimate the aboveground biomass of each stem we used the pan-tropical allometric model of Chave et al. (2014): 

	 	0.0673 ∗ . , where  is stem wood density (g cm-3),  is DBH (cm), 
and  is total tree height (m). We lacked measured tree heights and so used the diameter-height allometric model 
proposed by Chave et al. (2014), ln 0.893 	0.760 ∗ ln 0.0340 ∗ ln . The  parameter is a 
georeferenced bioclimatic stress variable that includes temperature seasonality, precipitation seasonality, and climatic 
water deficit that utilizes a linear relationship to estimate height (m) based on tree diameters . Aboveground carbon 
stocks (ACS) were estimated by multiplying aboveground tree biomass by 0.47 (IPCC, 2003). 
 
Stem wood densities  were extracted from a global pan-tropical database (Chave et al., 2009); in the absence of 
species-level data (9.4% of trees), the mean wood density was used for congeneric trees in tropical South America; 
we used the plot-level average wood density for the 28 stems for which we lacked taxonomic information (Baker et 
al., 2004). We report ACS for trees ≥10 cm diameter to facilitate comparisons with recent studies on post-logging 
biomass recovery (Rutishauser et al. 2015, Sist et al. 2015, Vidal et al. 2016). Our biomass estimates based on the  
Chave et al., (2014) allometry for our logged forests are potentially positively biased as the database of direct-harvest 
trees are primarily from undisturbed forests with only 5 secondary forests sites,  and may not capture the reduction in 
tree heights observed in logged forests (Rutishauser et al., 2016). The wood density parameter  captures differences 
in species composition (Baker et al., 2004a). To correct for the downward bias in our carbon estimates introduced by 
diameter measurements made at heights >1.3 m (Metcalf et al., 2009; Cushman et al., 2014), we developed and 
implemented a taper correction model using a local dataset with multiple diameter measurements along the trunks of 
150 trees across 23 genera (Appendix S2). 
 
Merchantable Timber Stocks (m3 ha-1) 
 
We applied in-country derived species-specific volumetric equations, when available, to estimate merchantable timber 
stocks at each census, and otherwise used a generic equation (Table S2). Our assessment of rates of post-logging 
merchantable timber stock recovery is restricted to the 31-species listed as commercial at the time of logging in 1994. 
Our timber stock estimates only include stems equal to and larger than the minimum cutting diameter for those 
commercial species (Table S2). We used the log grade scores to adjust our estimates of merchantable timber stocks 
(100% of grade 1 and 2; 90% of grade 3; and, 80% of grade 4). We used diameters measured above buttresses and 
trunk deformities to estimate timber stocks because these log sections are rejected during bucking. We also accounted 
for the subjective assignment of timber grades by multiple inventory crews by not allowing stems to improve bole 
grades throughout the census period. 
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Rates of Aboveground Biomass and Timber Productivity 
 
We divide aboveground biomass productivity into residual tree growth, recruitment into the smallest size class (10 cm 
DBH), and mortality. We followed the recommendation of Clark et al. (2001) for the treatment of recruits, which is 
to subtract the biomass of a 10 cm DBH tree from the biomass of each new tree when first recorded. Our aboveground 
biomass productivity rates are thus for trees ≥10 cm (for more details on assumptions of new recruit growth see 
Appendix S1). 
 
We partitioned our census data for timber stock recovery into recruitment rate (r) i.e. the rate at which new recruits 
grew into stem class ≥ 5 cm DBH, increments (m3 ha-1 yr-1) by advanced residuals (>20 cm DBH but ˂  species-specific 
cutting diameter limits; Table S2), and increments on residual crop trees (i.e., trees that were merchantable in 1994 

but were not harvested). We calculate recruitment based on the equation: 	 , where  is the census 

interval in years,	  is the population size at the beginning of the census interval and 	are the survivors at its end 
(Condit et al., 1999). The periodic annual increments (  for advanced regeneration and residual commercial trees 

(m3 ha-1 yr-1) were calculated for each plot as 
	

	; where  and  represent volume of surviving 

trees at the beginning and end of each census, respectively, and  is the total volume of recruited trees at the end of 

the census interval. We also calculated net periodic annual increment as 
	

, where  represents 

the volume of trees that died between censuses. 
 
Piecewise Model for ACS and Timber Recovery Predictions 
 
We applied a piecewise regression model (also referred to as a break-point model or broken-stick model; Beckage et 
al., 2007; Bourgeois et al., 2016) that captures the elevated mortality in the initial years after logging followed by a 
period of increased rates of residual growth and recruitment (Sist & Nguyen-Thé, 2002; Blanc et al., 2009; Mazzei et 
al., 2010; Shenkin et al., 2015; Piponiot et al., 2016). Compared to linear models that estimate a single slope parameter, 
piecewise models allow for rate-dependent changes in the slope parameter, representing threshold dynamics (Toms & 
Lesperance, 2003; Bourgeois et al., 2016). In our case, we applied a piecewise regression model with a single 
breakpoint. This model structure results in two straight lines that join at the breakpoints for our ACS and timber stock 
recovery models: 

Eq. 1 																												
	 	 	 ∗ 	 	 																																																												 	
	 	 	 ∗ 	 	 	 ∗ 	 	 	 	 																	 	

 

where  is the value for the  observation,	  is time since logged (years),  is logging intensity (m3 ha-1).  is the 
intercept term (unlogged forests),  is the background effect of time (including control plots), and  and  are the 
interaction terms between time since logging and logging intensity, including a pre-breakpoint effect ( 	;	elevated 
mortality) and a post-breakpoint effect ( ; residual growth and recruitment overtakes post-logging mortality) slopes, 
respectively. The breakpoint parameter, , is estimated as a free parameter, representing the time at which increased 
growth and recruitment outpace post-logging mortality. As we expected recovery of ACS and timber stocks to vary 
between plots due to spatial heterogeneity, we included plots as random effects ( ). 
 
We implement our model in a Bayesian hierarchical framework so as to interpret our results in a probabilistic manner 
relevant for adaptive forest management (Ghazoul & McAllister, 2003; Clark, 2005). We used non-informative priors, 
with the exception of the breakpoint parameter, which was parameterized with a weakly informative prior based on 
previous studies that report the duration of elevated post-logging mortality (Blanc et al., 2009; Shenkin et al., 2015; 
Piponiot et al., 2016 ; For more details see Appendix S1).We evaluated several variants of the piecewise model, 
including models with and without the main effects of logging intensity and time since logging, and chose the model 
structure with the highest predictive accuracy, quantified with out-of-sample predictions (leave-one-out-cross 
validation; Dietze et al., 2018). Because linear models are commonly used to estimate timber and carbon recovery 
after logging (Rutishauser et al., 2015b; Lussetti et al., 2016; Roopsind et al., 2017b), we also evaluated the predictive 
accuracy of linear regression models without the breakpoint and the post-breakpoint interaction term (i.e., without   
and  parameter in Eq. 1 ).We do not include the liberated plots in our piecewise models because logging and 
liberation occurred at different times, and the targeted mortality from the liberation treatment has a different biological 
interpretation than mortality associated with logging. We expect this model formulation to be more useful for 
projecting losses and recovery associated with logging intensity, as timber production data are commonly available. 
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We forecast timber stock recovery and ACS to 30 years after logging, the cutting cycle interval implemented in most 
selectively logged Amazonian forests (Zarin et al., 2007). Our forecast length is inclusive of the 25-year harvest 
rotation that most timber concessions opt to implement in Guyana based on harvests of 8.33 m3 ha-1. We also report 
variance explained by our random effects (plot-level) by applying the method proposed by Nakagawa & Schielzeth 
(2013)  for mixed effect models. All models were implemented in JAGS software in R (Plummer, 2011; R 
Development Core Team, 2015) with model code included in Supporting information (Appendix S1). 
 

Results 
 
Observed Recovery: Merchantable Timber Stocks (m3 ha-1) and ACS (Mg C ha-1) 
 
Merchantable timber stocks (i.e., harvestable wood volumes based on species-specific minimum cutting diameters) 
across all plots prior to logging (1993) averaged 40.9 m3 ha-1 (SE ± 3.0). Over the 20-year observation period, timber 
stocks in the control plots increased by 45% (from 39.5 to 57.3 m3 ha-1; Table 1 & Figure S2). Over this same period, 
RIL-low and RIL-moderate + liberation plots recovered their pre-logged merchantable timber stocks plus an additional 
7% (from 38.9 to 41.7 m3 ha-1) and 15% (from 44.4 to 51.0 m3 ha-1), respectively. In contrast, RIL-moderate and RIL-
high logging intensity remained below their pre-logged harvestable timber stocking by 9% (from 37.0 to 33.6 m3 ha-

1) and 50% (from 44.5 to 22.6 m3 ha-1), respectively. Net periodic annual increments of harvestable volume were 
highest in the RIL-moderate + liberated treatment (1.32 m3 ha-1 yr-1) and lowest at RIL-moderate (0.33 m3 ha-1 yr-1; 
Table 2). Recruitment rates of commercial species into the >5 cm DBH class were also highest in the RIL-moderate 
+ liberation treatment with similarly high levels of recruitment of non-commercial species (Table S3). 
 
Mean aboveground carbon stock (ACS) prior to logging across all 15 plots in 1993 was 185.1 Mg C ha-1 (SE ± 6.6; 
Table 1). Over the 20-year observation period the three control plots increased their mean ACS by 11%, from 183.8 
Mg C ha-1 in 1993 to 204.3 Mg C ha-1 in 2013 (Table 1). Twenty years after logging, ACS in plots subjected to RIL-
low and RIL-moderate intensity logging averaged 189.9 Mg C ha-1 and 194.3 Mg C ha-1, respectively, which were 3% 
and 1% higher than pre-logging (Table 1). Initial ACS losses were highest after RIL-high and RIL-moderate + 
liberation, with 23% and 42% of initial ACS lost, respectively (Figure S3); at 20 and 17 years these treatments were 
on average 9% (164.1 Mg C ha-1) and 19% (149.8 Mg C ha-1) below their initial ACS (Table 1 & Figure S2). Net 
periodic increments in aboveground carbon were highest for RIL-moderate + liberation at 1.69 Mg C ha-1 yr-1 and 
lowest at 0.13 Mg C ha-1 yr-1 for low intensity logged plots (Table 3). RIL-moderate, RIL-high, and the control plots 
recorded similar net increments in aboveground carbon stocks (Table 3). Census-specific changes in basal area, stem 
density, ACS, and biomass weighted wood density by diameter classes are reported in the Supporting information 
(Table S1). 
 
Piecewise Regression: Prediction of ACS and Timber Stock Recovery 
 
The piecewise regression coefficients that capture the interaction of time (years-after-logging) and harvest intensity 
(m3 ha-1) both indicate significant negative slopes prior to their respective breakpoints for ACS  followed by significant 
positive slopes (Figure 1). The negative values of the interaction terms prior to the breakpoints indicate that losses of 
both ACS and timber stocks increase with logging intensities. The positive values of the interaction terms after the 
breakpoint indicate that recovery rates increase with increasing logging intensity. Nevertheless, the higher logging 
intensity dampens the positive effect of time ( ) on recovery by elevating the size of the pre-breakpoint parameter 
( ) that captures elevated mortality (Figure 2). The timing of breakpoints was estimated at 1.71 years (95% CI, 1.3 - 
2.0) for carbon, and 1.30 years (95 % CI, 0.73 - 1.60) for timber (Figure S4). 
 
Our ACS forecast to 30 years indicate that the probabilities of ACS recovery to pre-logged levels (≥185.1 Mg C ha-1) 
after low and moderate intensity RIL logging are >90%, and only 45% after high intensity logging (Figure 3). The 
probabilities of full recovery of merchantable timber stocks (≥ 40.9 m3 ha-1) by 30 years after low and moderate 
logging intensity were also high (>90%). In contrast the probability of recovery after RIL-high logging intensity was 
zero (Figure 3). At the end of the 30 year forecast, ACS in low intensity logged plots average 203.6 Mg C ha-1 (95% 
CI: 184.6 – 222.7), 10% percent greater than in the high intensity logged plots (184.3 Mg C ha-1, 95% CI: 164.4– 
203.1). Timber stocks averaged 53.0 m3 ha-1 (95% CI: 44.5 – 61.2) in low intensity logged plots at 30 years, twice that 
in the high intensity logged plots (25.6 m3 ha-1; 95% CI: 16.7– 35.1; Figure S5). 
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Overall, the proportion of variance explained by our piecewise model reached values >90% based on out-of-sample 
R2 (leave-one-out cross validation) for both timber and ACS recovery models (Table 4). Linear models performed 
poorly in comparison to the piecewise model, with near-zero proportion of variance explained by linear models for 
timber and ~50% variance explained for ACS. Our breakpoint model also improved the precision of our predictions 
(RMSE) in the leave-one-out cross validation; reducing RMSE by 1.5 and 3 times the RSME values predicted in the 
linear models for ACS and timber stocks, respectively (Table 4). Plot level variation (i.e., random effects) explained 
38% (95% CI: 23.8 – 58.6%) and 45% (95% CI: 28.9 – 65.6%) of the total variance (R2) captured by our piecewise 
model for timber and ACS recovery, respectively. 
 

Discussion 
 
Reduced-Impact Logging Intensity Thresholds for Sustainable Forest Management 
 
One important challenge for tropical forest management is identification of thresholds for timber extraction and post-
logging treatments that are compatible with maintenance of ecosystem values (Petrokofsky et al., 2015). We evaluated 
logging intensity thresholds beyond which ecosystem benefits specific to carbon and timber recovery are lost. Our 
experimental data from a Guiana Shield forest suggest that for both carbon and timber, RIL harvests of >8 trees ha-1 
are followed by slow recovery.  A similar study conducted in dipterocarp forests in East, Kalimantan, Indonesia came 
up with exactly the same logging intensity threshold of 8 trees ha-1 with RIL beyond which residual stand resilience 
is compromised (Sist & Nguyen-Thé, 2002). Those recovery times depend substantially on the presence of remnant 
old growth trees, which is why, for example, the time-to-recover carbon stocks is even faster at the lowest observed 
logging intensity (4 trees ha-1 or 16 m3 ha-1). This finding is consistent with Amazonia- wide results that show that  the 
time needed to recover initial carbon stocks increases with ACS losses (Rutishauser et al., 2015a). For biodiversity 
benefits as well, the lowest logging intensity in our study is close to the purported threshold (10 m3 ha-1) above which 
a global meta-analysis of biodiversity impact studies revealed rapidly increasing species losses (Burivalova et al., 
2014). 
 
The high probability of harvestable timber volume recovery by the end of the 30-year rotation at a logging intensity 
of 4 trees ha-1 is mostly due to the presence of commercial trees that survived the first harvest (i.e. old growth wood; 
Figure 3 and Table 2). In contrast, after harvests > 8 tree ha-1, remnant commercial trees are scarce and volume 
recovery depends on recruitment and growth of advanced regeneration into harvestable size classes (Table 2). One 
potential pitfall from RIL-low intensity harvests is that they do not stimulate recruitment and growth of commercial 
species (Table 2). In primary forest in  the Guianas, dynamics are slow and governed by gaps formed when large trees 
die and fall (ter Steege et al., 1996). To the extent that gap dynamics drive growth and recruitment rates (Michela et 
al., 2008; Villegas et al., 2009), RIL-moderate logging intensity may represent a compromise as this intensity 
maintains some old growth commercial trees while causing enough disturbance to stimulate recruitment and growth 
of the advanced regeneration needed for long-term timber production (Table 2). Net ACS increments were slightly 
higher at our study site compared to Amazonian-averages predicted in Piponiot et al., (2016) at 20 years based on the 
percentage of initial ACS lost to logging (Figure S3). The higher estimates can both be explained by the inclusion of 
10-20 cm diameter classes in our analysis and higher ACS gains from tree growth in the Guiana Shield (Johnson et 
al., 2016). 
 
Intensification for Timber Production: Timber and Carbon Tradeoffs 
 
Liberation of FCTs from liana loads and overtopping canopy competitors is often recommended as a silvicultural 
treatment for selectively logged tropical forests (e.g., De Graaf et al., 1999; Peña-Claros et al., 2008). At our study 
site this treatment applied after RIL-moderate intensity of 8 trees ha-1 resulted in a fourfold increase in net 
merchantable timber volume increments (Table 2) and almost twofold increase in recruitment rates of commercial 
species into the 5-cm DBH class compared to similarly logged but unliberated forests (Table S3). At 20 years post-
logging and 17 years after liberation, the unliberated plots were 33% below pre-logged timber stocks whilst the 
liberated plots exceeded pre-logged timber stocks by 2% (Table 1). It is important to note that this faster recovery of 
timber stocks came at the cost of carbon, with liberated forests storing 19% less above-ground carbon than similarly 
logged but unliberated forests (Figure 4). 
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The liberation treatment also stimulated recruitment of twice as many non-commercial stems into the 5 cm DBH class 
as the logged but unliberated plots. One concern about this finding is that these non-commercial species will 
outcompete the slower growing high wood density commercial species (de Avila et al., 2015). The changing 
composition of these forests was also reflected in a 3% decline in biomass-weighted wood density in the smaller 
diameter classes (Table S1). To maintain the high rates of timber stock increments observed after the first liberation 
treatment, additional liberation treatments may be required if, as in other forests, the benefits last less than a decade 
(Wadsworth & Zweede, 2006). Multiple liberation treatments may slowly transform these forests, from uneven-aged, 
high species diversity stands into more homogeneous and otherwise plantation-like stands, with concomitant losses in 
biodiversity (Putz & Romero, 2014). If increased yields through management intensification in suitable stands allows 
other, more environmentally sensitive or valuable lands to be spared from such treatments, then there could be overall 
landscape gains for biodiversity and other non-timber values. 
 
Piecewise Model: Accounting for Demographic Changes After Logging 
 
Although linear regression is often used to analyze biomass recovery after logging (e.g., Rutishauser et al., 2015b; 
Lussetti et al., 2016; Roopsind et al., 2017b), post-logging recovery is non-linear, due to continued decreases in 
biomass after logging followed by increases in biomass as the forest recovers (Blanc et al., 2009; Piponiot et al., 
2016). Modelling recovery of ACS and timber stocks as a linear response often entails dropping the pre-logged census 
data. To build a linear relationship between the logging effect and biomass dynamics, observations in logged plots 
must then be compared to either a static pre-logging baseline condition or to unlogged plots (i.e., controls). In the case 
of the latter, comparisons with different unlogged plots introduces additional uncertainty given that among plot 
variation in tropical forests is high due to spatial processes that drive biomass dynamics, such as blowdowns (Chave 
et al., 2001), while comparisons with  a static baseline ignore the fact that tropical forests are constantly changing 
(Baker et al., 2004b). Our point is that comparisons to different plots and/or a static state introduce uncertainty that 
could mask the effect of logging intensity on recovery rates. Our piecewise model enabled us to overcome problems 
with among-plot variation by comparing logging recovery to pre-logged conditions at the plot level, while accounting 
for changing baselines in the control plots. The conceptual advantages of our piecewise model were mirrored in 
predictive performance, with substantial gains in out-of-sample R2 (>90%) for both timber recovery and ACS in the 
piecewise model, relative to linear models (Table 4). We argue that further use of non-linear models will more 
accurately reflect post-logging demographic changes that vary with logging intensity. 
 
Our piecewise model also enabled us to quantify the observed interaction between logging intensity and time-since-
logging both before and after the breakpoint (Figure 1). Results confirm our expectation that ACS recovery rates 
increase with logging intensity. A likely demographic mechanism for this result is that residual trees benefit from 
reduced competition (Villegas et al., 2009). Similarly, carbon losses immediately after logging increase with logging 
intensity as more trees are killed by felling and other harvest operations. The relative magnitudes of these slope terms 
suggest a dynamic in which stimulated residual tree growth is insufficient to compensate for post-logging mortality at 
high logging intensities.  Estimating the timing of the breakpoint improved predictive accuracy and contributed to 
biologically-meaningful inferences. For example, our model predicts that the breakpoint for timber recovery occurs 
earlier than the breakpoint for carbon recovery, suggesting that RIL goals of reducing mortality of timber species, 
relative to the non-commercial species, were successful. Model estimates of breakpoint timing were within the range 
of those reported for other logged forests in the Guiana Shield (Blanc et al., 2009). 
 
Our piecewise model supports the prediction that there are logging intensity thresholds for sustainable timber 
production beyond which forests recovery as well as the provision of ecosystem services are at risk, even with RIL 
practices. Moreover, the piecewise model has clear inputs and outputs based on familiar linear regressions, which 
forest managers may be more comfortable with relative to simulation models that rely on multiple sub-models and the 
ability to modify and interpret source code (e.g., SYMFOR; Phillips & Gardingen, 2001). Although the period of 
elevated post-logging mortality is likely to end gradually and not with a sharp breakpoint, capturing such gradual 
changes requires finer scale temporal data than ours. The piecewise approach can be a useful tool as most other long-
term permanent sample plot data in tropical forests are characterized by long and irregular census intervals due to 
funding gaps. Overall, our piecewise model serves as a compromise between no effort to model recovery and the 
complex application of more sophisticated models (Alder, 1992). 
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Implications for Sustainable Forest Management 
 
Managed forests are expected to sustain the capacity to produce timber and provide the ecosystem services needed by 
society. RIL practices applied in selectively logged forests maintain timber and carbon stocks, at least up to a second 
harvest, if logging intensities are kept low and conditioned on site-specific characteristics (i.e., below thresholds that 
retain residual old growth trees). These well-managed forests that provide timber and ecosystem services (e.g., carbon 
and biodiversity) can potentially offset opportunity costs associated with more profitable land uses such as pastures 
and croplands that results in huge carbon emissions and losses in biodiversity (Sasaki et al., 2012). However, such 
ecosystem service payments will require effective policies, governance, and monitoring structures to ensure payments 
for carbon sequestration and biodiversity improve forestry practices on the ground (e.g., REDD+). 
 
If the primary goal is timber production, higher logging intensities coupled with liberation of future crop trees is 
recommended but with the caveat that this intensification comes at the cost of other ecosystem services, or at least 
carbon, for which forests are also valued (Houghton et al., 2015). If intensification of timber production occurs in a 
portion of the landscape and satisfies timber demand, there will be more opportunities for protection of more pristine 
forests (i.e., land sparing; Edwards et al., 2014; Griscom et al., 2017). 
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Figure 1. Piecewise model coefficients for aboveground carbon and timber stocks. Points are the mean parameter 
estimate with vertical lines indicating 95% credible intervals. Parameter estimates that do not cross the zero value 
(dashed line) can be considered to have a significant effect. The Time term represents the baseline impact of time 
across all plots (including controls). The effects of logging before and after the breakpoint represent the interactions 
between logging intensity and time since logging during these two time periods. 
 
Figure 2. Predictions from piecewise regression models for ACS (Mg C ha-1) and timber stocks (m3 ha-1) in unlogged 
forests and at different logging intensities using RIL. Dark lines are mean predicted recovery, with 95% credible 
intervals indicated by the lighter shaded bands. Points are the observed values. Predictions account for both parameter 
and sampling uncertainty. 
 
Figure 3. Probability of recovery of ACS and harvestable timber stocks to pre-logged carbon stocks (184 Mg C ha-1) 
and harvestable timber volume (40 m3 ha-1) for forests logged at RIL- low, moderate and high intensity. Model 
forecasts span 30 years (10-years beyond observed data). 
 
Figure 4. Recovery of ACS (left panel - a) and harvestable timber stocks (right panel - b) for forests logged at an 
intermediate intensity (RIL-moderate; 8 trees ha-1; solid line) and forests logged at the same intensity and subjected 
to liberation thinning (RIL-moderate + liberation; broken line). A solid arrow on the x-axis indicates time of logging 
(1994) and a broken arrow indicates the time of liberation (1996). 
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Table 1. Harvest information and silvicultural treatments applied in the Pibiri reduced-impact logging growth and yield experimental plots in central Guyana based 
on all trees ≥10 cm DBH in 1.96 ha; pre-harvest forest structure prior to logging intervention (1993), 20-years post-logging, and 17-years post-liberation of future 
crop trees (2013). 

Silvicultural 
Treatment 

Plot 
ID 

Extracted 
timber 
(m3 ha-1) 

Basal area 
harvested 
(m2 ha-1) 

Stems 
harvested 
(ha-1) 

Pre-harvest stand structure (1993) Post-harvest/treatment stand structure 
(2013) 

Basal 
area  
(m2 
ha-1) 

Stem 
density 
(ha-1) 

ACS      
(Mg C 
ha-1) 

Merchantable 
timber stocks * 
(m3 ha-1) 

Basal 
area 
(m2 
ha-1) 

Stem 
density 
(ha-1) 

ACS     
(Mg C 
ha-1) 

Merchantable 
timber stocks * 
(m3 ha-1) 

RIL – Low 3 14.30 1.10 4 30.6 461 222.89 41.05 30.7 421 232.25 45.89 
RIL – Low 10 16.30 1.20 4 25.3 561 155.22 38.43 25.4 525 158.16 36.76 
RIL – Low 11 18.20 1.30 4 26.7 478 177.10 37.22 26.2 423 179.40 42.50 
RIL – Moderate 1 25.60 2.00 8 24.8 481 166.05 34.48 27.5 491 192.40 33.18 
RIL – Moderate 8 20.80 1.80 8 29.5 668 186.48 26.42 27.4 600 176.24 26.81 
RIL – Moderate 15 24.50 1.90 8 30.2 458 222.56 50.16 29.0 441 214.17 40.78 
RIL – High 2 39.70 3.40 16 28.3 466 208.53 35.39 26.4 444 187.60 16.66 
RIL – High 7 53.80 4.00 16 24.1 432 159.86 51.31 23.2 516 143.02 18.19 
RIL – High 14 50.30 3.60 16 25.8 443 174.69 46.79 24.7 508 161.62 32.88 
RIL - Moderate + liberation 4 26.30 1.9 (5.5+) 8 (49+) 25.0 511 161.28 40.05 22.6 530 135.71 39.85 
RIL - Moderate + liberation 9 23.00 1.8 (7.3+) 8 (64+) 26.2 537 165.48 23.20 23.7 538 146.77 30.68 
RIL - Moderate + liberation 13 38.60 2.7 (9.0+) 8 (54+) 29.6 402 224.50 69.96 24.0 447 166.82 82.36 
Control (unlogged) 5 - - - 26.5 464 177.47 35.16 28.7 473 195.82 58.14 
Control (unlogged) 6 - - - 24.4 442 164.20 34.53 26.3 425 177.95 49.39 
Control (unlogged) 12 - - - 27.7 340 209.81 48.81 31.5 394 238.98 64.33 

+ killed by frilled and poison 
* includes only volumes in trees larger than species-specific minimum cutting diameters (Table S2) 
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Table 2. Periodic annual increments (m3 ha-1 yr-1) for advanced regeneration (>20 cm DBH and < species-specific 
cutting diameters) and harvestable timber volumes for commercial timber species. Note that trees that transition from 
advanced regeneration into the harvestable classes reduce the former. 

Silvicultural Treatment 
Gross volume increments of 
advanced regeneration  
(m3 ha-1 year-1; ± 1 SE) 

Gross harvestable volume 
increments (m3 ha-1 year-1; ± 
1 SE) 

Net harvestable volume 
increments (m3 ha-1 year-1; 
± 1 SE) 

RIL - Low -0.01 (± 0.19) 0.86 (± 0.15) 0.77 (±0.12) 
RIL - Moderate 0.58 (± 0.19) 0.45 (± 0.14) 0.33 (±0.16) 
RIL - High 0.47 (± 0.27) 0.70 (± 0.11) 0.68 (±0.12) 
RIL - Moderate + liberation 0.91 (± 0.21) 1.58 (± 0.39) 1.32 (±0.31) 
Control (unlogged) -0.02 (± 0.20) 1.09 (± 0.17) 1.02 (±0.18) 

 
 
Table 3. Gross and net periodic annual increments (PAI; Mg C ha-1 yr-1) for trees ≥ 10 cm DBH for the post-logging 
recovery of 1997 to 2013. 

Silvicultural Treatment Gross PAI of 
aboveground carbon 
(Mg C ha-1 year-1; SE) 

Net PAI of aboveground 
carbon (Mg C ha-1 year-1; SE) 

RIL - Low 2.11 (± 0.32) 0.13 (± 0.42) 
RIL - Moderate 2.78 (± 0.78) 1.09 (± 1.02) 
RIL - High 2.88 (± 0.55) 1.04 (± 0.65) 
RIL - Moderate + liberation 3.54 (± 0.63) 1.69 (± 0.88) 
Control (unlogged) 2.34 (± 0.57) 1.02 (± 0.87) 

 
 
Table 4. Out-of-sample predictive performance of piecewise and linear models, estimated using leave-one-out cross 
validation (Eq.1). 

 R2 (95% CI) RMSE (95% CI) 

Piecewise models (Eq. 1) 

Timber stocks 0.91(0.88 - 0.94) 4.35 (3.72 - 5.00) 

Aboveground carbon 
stocks 

0.92 (0.90-0.94) 8.04 (6.85 - 9.20) 

Linear models – (excludes the 	 . 1  

Timber stocks 0.00 (0.00-0.04) 16.99 (14.33 - 19.93) 

Aboveground carbon 
stocks 

0.49 (0.33 - 0.63) 20.44 (17.44 - 23.57) 
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Figure 1 
 
 

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at Ecology, 
published by Wiley on behalf of the Ecological Society of America. Copyright restrictions may apply. doi: 10.1111/gcb.14155 



16 

 
Figure 2 
 
 

 
Figure 3 
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Figure 4 
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