214 research outputs found

    Practical application and statistical analysis of titrimetric monitoring of water and sludge samples

    Get PDF
    Titrimetry offers the possibility of simultaneous measurement at low cost of several (buffering) components. A first step in the study towards practical application of the titrimetric technique was the titrimetric analysis by up- or down-titration of standard solutions, standard mixtures, solids digester samples and water samples coming from autotrophic nitrogen-removal reactors. The resulting raw data were further processed with an Excel-based program. This program first converts the raw data into a buffer curve upon which a linear buffer capacity model is fitted to the experimental data by estimating the (buffer) concentrations and corresponding pKa values. As such the type of component and the concentration can be determined. As a second step the resulting calculated concentrations were analysed statistically to assess the accuracy and precision of the titrimetric technique. For this purpose, the data were paired, i.e. the difference between the concentration obtained with titrimetry and the concentration obtained with another technique such as colorimetry or gas chromatography was calculated. First the normality of the paired data was assessed. Then, a paired t-test (normal data) or a paired Wilcoxon test (normal data) was used to statistically compare the results obtained with the titrimetric technique to either the stock solution concentration or measurements with another method (colorimetry or gas chromatography). The statistical tests showed that, depending on the titrant concentration, concentrations from 50 mg/. to 3 000 mg/. could adequately be measured with the titrimetric technique

    Identifying brain changes related to cognitive aging using VBM and visual rating scales

    Get PDF
    Aging is often associated with changes in brain structures as well as in cognitive functions. Structural changes can be visualized with Magnetic Resonance Imaging (MRI) using voxel-based grey matter morphometry (VBM) and visual rating scales to assess atrophy level. Several MRI studies have shown that possible neural correlates of cognitive changes can be seen in normal aging. It is still not fully understood how cognitive function as measured by tests and demographic factors are related to brain changes in the MRI. We recruited 55 healthy elderly subjects aged 50–79 years. A battery of cognitive tests was administered to all subjects prior to MRI scanning. Our aim was to assess correlations between age, sex, education, cognitive test performance, and the said two MRI-based measures. Our results show significant differences in VBM grey matter volume for education level (≤ 12 vs. > 12 years), with a smaller amount of grey matter volume in subjects with lower educational levels, and for age in interaction with education, indicating larger grey matter volume for young, higher educated adults. Also, grey matter volume was found to be correlated with working memory function (Digit Span Backward). Furthermore, significant positive correlations were found between visual ratings and both age and education, showing larger atrophy levels with increasing age and decreasing level of education. These findings provide supportive evidence that MRI-VBM detects structural differences for education level, and correlates with educational level and age, and working memory task performance.</p

    Process evaluation of appreciative inquiry to translate pain management evidence into pediatric nursing practice

    Get PDF
    Background Appreciative inquiry (AI) is an innovative knowledge translation (KT) intervention that is compatible with the Promoting Action on Research in Health Services (PARiHS) framework. This study explored the innovative use of AI as a theoretically based KT intervention applied to a clinical issue in an inpatient pediatric care setting. The implementation of AI was explored in terms of its acceptability, fidelity, and feasibility as a KT intervention in pain management. Methods A mixed-methods case study design was used. The case was a surgical unit in a pediatric academic-affiliated hospital. The sample consisted of nurses in leadership positions and staff nurses interested in the study. Data on the AI intervention implementation were collected by digitally recording the AI sessions, maintaining logs, and conducting individual semistructured interviews. Data were analysed using qualitative and quantitative content analyses and descriptive statistics. Findings were triangulated in the discussion. Results Three nurse leaders and nine staff members participated in the study. Participants were generally satisfied with the intervention, which consisted of four 3-hour, interactive AI sessions delivered over two weeks to promote change based on positive examples of pain management in the unit and staff implementation of an action plan. The AI sessions were delivered with high fidelity and 11 of 12 participants attended all four sessions, where they developed an action plan to enhance evidence-based pain assessment documentation. Participants labeled AI a 'refreshing approach to change' because it was positive, democratic, and built on existing practices. Several barriers affected their implementation of the action plan, including a context of change overload, logistics, busyness, and a lack of organised follow-up. Conclusions Results of this case study supported the acceptability, fidelity, and feasibility of AI as a KT intervention in pain management. The AI intervention requires minor refinements (e.g., incorporating continued follow-up meetings) to enhance its clinical utility and sustainability. The implementation process and effectiveness of the modified AI intervention require evaluation in a larger multisite study

    Attention wins over sensory attenuation in a sound detection task

    Get PDF
    'Sensory attenuation', i.e., reduced neural responses to self-induced compared to externally generated stimuli, is a well-established phenomenon. However, very few studies directly compared sensory attenuation with attention effect, which leads to increased neural responses. In this study, we brought sensory attenuation and attention together in a behavioural auditory detection task, where both effects were quantitatively measured and compared. The classic auditory attention effect of facilitating detection performance was replicated. When attention and sensory attenuation were both present, attentional facilitation decreased but remained significant. The results are discussed in the light of current theories of sensory attenuation

    Study protocol: adjuvant holmium-166 radioembolization after radiofrequency ablation in early-stage hepatocellular carcinoma patients-a dose-finding study (HORA EST HCC Trial)

    Get PDF
    Purpose To investigate the biodistribution of holmium-166 microspheres (Ho-166-MS) when administered after radiofrequency ablation (RFA) of early-stage hepatocellular carcinoma (HCC). The aim is to establish a perfused liver administration dose that results in a tumoricidal dose of holmium-166 on the hyperaemic zone around the ablation necrosis (i.e. target volume). Materials and Methods This is a multicentre, prospective, dose-escalation study in HCC patients with a solitary lesion 2-5 cm, or a maximum of 3 lesions of = 120 Gy has been reached on the target volume in 9/10 patients of a cohort. Secondary endpoints include toxicity, local recurrence, disease-free and overall survival. Discussion This study aims to find the optimal administration dose of adjuvant radioembolization with Ho-166-MS after RFA. Ultimately, the goal is to bring the efficacy of thermal ablation up to par with surgical resection for early-stage HCC patients.Cellular mechanisms in basic and clinical gastroenterology and hepatolog

    Active inference, sensory attenuation and illusions.

    Get PDF
    Active inference provides a simple and neurobiologically plausible account of how action and perception are coupled in producing (Bayes) optimal behaviour. This can be seen most easily as minimising prediction error: we can either change our predictions to explain sensory input through perception. Alternatively, we can actively change sensory input to fulfil our predictions. In active inference, this action is mediated by classical reflex arcs that minimise proprioceptive prediction error created by descending proprioceptive predictions. However, this creates a conflict between action and perception; in that, self-generated movements require predictions to override the sensory evidence that one is not actually moving. However, ignoring sensory evidence means that externally generated sensations will not be perceived. Conversely, attending to (proprioceptive and somatosensory) sensations enables the detection of externally generated events but precludes generation of actions. This conflict can be resolved by attenuating the precision of sensory evidence during movement or, equivalently, attending away from the consequences of self-made acts. We propose that this Bayes optimal withdrawal of precise sensory evidence during movement is the cause of psychophysical sensory attenuation. Furthermore, it explains the force-matching illusion and reproduces empirical results almost exactly. Finally, if attenuation is removed, the force-matching illusion disappears and false (delusional) inferences about agency emerge. This is important, given the negative correlation between sensory attenuation and delusional beliefs in normal subjects--and the reduction in the magnitude of the illusion in schizophrenia. Active inference therefore links the neuromodulatory optimisation of precision to sensory attenuation and illusory phenomena during the attribution of agency in normal subjects. It also provides a functional account of deficits in syndromes characterised by false inference and impaired movement--like schizophrenia and Parkinsonism--syndromes that implicate abnormal modulatory neurotransmission

    RAD50 Is Required for Efficient Initiation of Resection and Recombinational Repair at Random, Îł-Induced Double-Strand Break Ends

    Get PDF
    Resection of DNA double-strand break (DSB) ends is generally considered a critical determinant in pathways of DSB repair and genome stability. Unlike for enzymatically induced site-specific DSBs, little is known about processing of random “dirty-ended” DSBs created by DNA damaging agents such as ionizing radiation. Here we present a novel system for monitoring early events in the repair of random DSBs, based on our finding that single-strand tails generated by resection at the ends of large molecules in budding yeast decreases mobility during pulsed field gel electrophoresis (PFGE). We utilized this “PFGE-shift” to follow the fate of both ends of linear molecules generated by a single random DSB in circular chromosomes. Within 10 min after γ-irradiation of G2/M arrested WT cells, there is a near-synchronous PFGE-shift of the linearized circular molecules, corresponding to resection of a few hundred bases. Resection at the radiation-induced DSBs continues so that by the time of significant repair of DSBs at 1 hr there is about 1–2 kb resection per DSB end. The PFGE-shift is comparable in WT and recombination-defective rad52 and rad51 strains but somewhat delayed in exo1 mutants. However, in rad50 and mre11 null mutants the initiation and generation of resected ends at radiation-induced DSB ends is greatly reduced in G2/M. Thus, the Rad50/Mre11/Xrs2 complex is responsible for rapid processing of most damaged ends into substrates that subsequently undergo recombinational repair. A similar requirement was found for RAD50 in asynchronously growing cells. Among the few molecules exhibiting shift in the rad50 mutant, the residual resection is consistent with resection at only one of the DSB ends. Surprisingly, within 1 hr after irradiation, double-length linear molecules are detected in the WT and rad50, but not in rad52, strains that are likely due to crossovers that are largely resection- and RAD50-independent
    • …
    corecore