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Abstract	
The	next-generation	network	provides	state-of-the-art	access-independent	services	over	
converged	mobile	and	fixed	networks.	Security	in	the	converged	network	environment	is	
a	major	challenge.	Traditional	packet	and	protocol-based	intrusion	detection	techniques	
cannot	be	used	in	next-generation	networks	due	to	slow	throughput,	low	accuracy	and	
their	inability	to	inspect	encrypted	payload.	An	alternative	solution	for	protection	of	next-
generation	networks	is	to	use	IP	flow	records	for	detection	of	malicious	activity	in	the	
network	traffic.	IP	flow	records	are	independent	of	access	networks	and	user	
applications.	In	this	paper,	we	propose	a	two-stage	flow-based	intrusion	detection	system	
for	next-generation	networks.	The	first	stage	uses	an	enhanced	unsupervised	one-class	
support	vector	machine	which	separate	malicious	IP	flows	from	normal	network	traffic.	
The	second	stage	uses	a	self-organizing	map	which	automatically	groups	malicious	IP	
flows	into	different	alert	clusters.	We	validated	the	proposed	approach	on	two	flow-based	
datasets	and	obtained	promising	results.	

Introduction	
Next-generation	network	(NGN)	is	an	open	platform	which	provides	communication,	
multimedia,	and	business	services	through	a	comprehensive	IP-based	network	
architecture.	NGN	enables	the	user	to	use	multiple	QoS-enabled	broadband	technologies	
for	service	provisioning.	These	services	used	in	multiple	business	and	social	applications.	
[1],	[2]	NGN	services	are	provided	on	converged	mobile	and	fixed	networks.	The	key	
aspect	in	NGN	architecture	is	the	separation	of	service,	control,	transport	and	access	
functions	in	different	layers.	These	layers	and	interconnected	with	each	other	through	
well-defined	interfaces.	[3]	Fig	1	shows	the	architecture	of	next-generation	network.	The	
user	equipment	(UE)	is	connected	to	the	access	layer.	Access	network	layer	is	a	
combination	of	legacy	networks	e.g.	PSTN,	GSM,	and	ISDN.	The	access	layer	is	connected	
with	core	layer.	The	core	layer	consists	of	high-end	routers	and	switches.	This	layer	uses	
IP	network	to	forward	network	traffic	to	control	layer.	The	control	layer	comprises	of	
Soft-switches	and	performs	call	control	and	media	gateway	functions	for	NGN	services.	
The	service	provisioning	layers	include	various	multimedia	and	communication	NGN	
services	e.g.	VoIP,	IPTV,	VoD	and	VPN.	[4]	
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Next	Generation	Networks	(NGNs)	architecture	is	open	for	different	types	of	access	
networks	and	user	services.	However,	the	convergence	of	heterogeneous	network	
architectures	can	have	serious	security	implications.	[5],	[6]	Traditional	security	
approaches	cannot	fully	counter	the	intrusion	attacks.	[7]	To	complement	traditional	
security	measures,	intrusion	detection	system	(IDS)	came	in	and	become	an	integral	part	
of	computer	networks.	[8]	Intrusion	detection	systems	analyze	host	logs	or	network	
activities	and	raise	an	alarm	if	the	suspicious	behavior	is	detected.	

	
Fig	1.	Next-generation	network	architecture	

Despite	extensive	research	in	intrusion	detection	[9],	a	large	number	of	successful	
cyber	attacks	on	government	and	corporate	intranets	have	been	observed	recently.	The	
Global	Information	Security	State	Survey	[10]	gathers	that	the	total	number	of	security	
incidents	detected	by	respondents	climbed	to	42.8	million	in	2014,	an	increase	of	48%	
from	2013.	The	rising	trend	of	attacks	shows	that	existing	intrusion	detection	systems	
still	need	improvement,	and	new	approaches	are	imperative	for	defense	against	cyber	
attacks.	[11].	

The	accuracy	and	efficiency	of	intrusion	detection	systems	become	more	important	in	
the	context	of	next-generation	networks	because	the	NGN	inherits	the	vulnerabilities	of	
access	networks	[12].	In	this	paper,	we	have	proposed	a	flow-based	intrusion	detection	
model	for	next-generation	networks.	Our	approach	uses	two-stage	process	for	detection	
of	malicious	activity	in	network	traffic.	The	first	stage	detection	process	uses	one-class	
support	vector	machine	(SVM)	and	determines	if	a	network	flow	is	malicious	or	normal.	
Although	one-class	SVM	is	supervised	learning	technique,	we	employ	an	enhanced	
version	of	one-class	SVM	which	support	unsupervised	learning.	The	second	stage	
detection	process	employs	a	self-organizing	map	(SOM)	to	automatic	clustering	of	
malicious	flows	in	different	attack	classes.	We	validated	the	proposed	approach	on	two	
flow-based	datasets	and	obtained	promising	results.	

The	remainder	of	this	paper	is	organized	as	follows.	Section	2	gives	an	overview	of	
flow-based	intrusion	detection.	Section	3	describes	the	existing	work	in	flow-based	
intrusion	detection	systems.	Section	4	gives	a	detail	description	of	our	proposed	
approach.	The	datasets	used	for	evaluation	of	the	proposed	approach	are	discussed	in	
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section	5.	We	discuss	experimental	results	in	section	6.	Finally,	the	conclusion	is	
presented	in	Section	7.	

Flow-based	intrusion	detection	
Traditional	intrusion	detection	systems	use	deep	packet	or	state-full	protocol	inspection	
to	detect	malicious	activity	in	the	network	traffic.	Deep	packet	inspection	(DPI)	
techniques	scan	the	packet	beyond	the	protocol	header	and	inspect	its	content.	DPI	
techniques	provide	complete	visibility	of	network	traffic	and	filter	the	packet	content	for	
malware,	virus	or	any	other	attack	traces.	[13]	However,	deep-packet	inspection	becomes	
impractical	for	high-speed	backbone	links	[14].	Also,	deep-packet	inspection	is	not	
possible	when	packet	content	is	encrypted.	In	state-full	protocol	inspection,	the	complete	
semantics	of	the	protocol	are	checked	against	the	specification	and	any	out	of	range	value	
is	considered	an	anomaly.	State-full	protocol	inspection	techniques	are	protocol	specific	
and	cannot	be	generalized	for	unknown	protocols.	Also,	both	packet	and	state-full	
protocol	inspection	techniques	are	computationally	costly	and	become	a	performance	
bottleneck	[9,15].	

Packet	and	protocol-based	intrusion	detection	systems	cannot	be	used	in	next-
generations	networks	due	to	their	limitations	[16,17].	An	alternative	solution	for	
protection	of	next-generation	networks	is	flow-based	intrusion	detection	[15].	The	flow-
based	intrusion	detection	systems	use	IP	flow	records	as	input	and	try	to	find	out	if	
network	traffic	is	normal	or	malicious	[18].	IP	flow	records	contain	aggregated	
information	of	related	network	packets.	An	IP	flow	is	defined	as	”a	set	of	packets	or	
frames	passing	an	observation	Point	in	the	network	during	a	certain	time	interval.	All	
packets	belonging	to	a	particular	Flow	have	a	set	of	common	properties”.	[19]	IP	flow	
record	has	a	number	of	applications	including	network	traffic	accounting,	billing,	
monitoring	and	security.	

The	IP	flows	are	collected	from	the	network	using	a	flow	export	and	collection	
protocol.	The	process	of	flow	export	and	collection	is	controlled	by	a	flow	export	protocol.	
The	most	common	flow	collection	and	export	protocol	is	Cisco’s	Netflow.	Netflow	was	
adapted	by	IETF	and	has	been	formalized	in	the	form	of	IP	Flow	Information	Exchange	
(IPFIX)	[19].	The	deployment	of	IPFIX/Netflow	consists	of	following	processes:-	

Packet	capturing	at	observation	point.	Observation	points	collect	the	packets	being	
passed	through	a	specific	interface.	The	observation	points	can	be	standalone	
devices	or	a	part	of	flow-enabled	routers.	The	observation	process	forwards	the	
packet	to	a	flow	metering	and	export	process	

Flow	metering	and	export	process.	The	metering	process	 time-stamps	the	packets	
and	aggregates	them	into	IP	flows.	The	flows	can	be	sampled	or	filtered	according	
to	the	requirements.	These	flows	are	forwarded	to	an	export	process	which	exports	
the	flows	in	IPFIX	record.	These	IPFIX	records	are	forwarded	to	a	collector	process.	

Collecting	process.	The	collecting	process	receives	IPFIX	records	from	exporting	
process.	There	can	be	multiple	collecting	processes	receiving	IPFIX	records	from	
different	exporting	processes.	Accordingly	there	can	be	multiple	exporting	
processes	sending	IPFIX	records	to	multiple	collecting	processes.	The	collecting	
process	store	and	pre-process	the	flow	data	for	the	flow	analysis	and	monitoring	
application.	

Flow-based	intrusion	detection	systems	are	also	based	on	the	generic	intrusion	
detection	model	presented	in	[20].	The	incoming	IP	flows	are	collected	from	the	network	
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using	observation	points	(event-boxes).	These	IP	flows	can	be	optionally	stored	in	a	flow	
database	(database-boxes).	Then	IP	flows	are	forwarded	to	an	analysis	box	for	evaluation.	
The	analysis	box	uses	anomaly	detection	techniques	for	attack	detection.	If	any	attack	is	
detected,	a	response	is	initiated	through	the	response-boxes.	

Related	Work	
Flow-based	intrusion	detection	is	an	active	area	of	research.	A	number	of	flow-based	
techniques	using	statistical	and	machine	learning	methods	for	detection	of	IP	flows	have	
been	proposed.	[21]	proposed	a	flow-based	intrusion	detection	system	using	SVM	based	
one-class	classification.	The	one-class	SVM	(OC-SVM)	uses	malicious	IP	flows	as	target	
class.	Learning	on	malicious	flows	is	fast	and	efficient.	After	learning,	the	OC-SVM	detects	
the	malicious	flows	while	normal	flows	are	discarded.	A	flow-based	dataset	developed	by	
[22]	is	used	for	evaluation.	The	OC-SVM	gives	very	good	results	with	98%	accuracy	and	
0%	false	alarm	rate.	These	malicious	flows	can	be	further	analyzed	for	identification	of	
attack	type.	

A	network	anomaly	detection	system	using	multiple	unsupervised	clustering	
techniques	is	presented	in	[23].	The	technique	uses	a	change	detection	algorithm	to	
detect	the	malicious	flows.	The	malicious	flows	are	clustered	in	partitions	using	sub-
space	and	density-based	clustering.	The	clusters	are	also	ranked	in	order	of	
abnormality	and	all	clusters	above	the	detection	threshold	are	considered	anomalies.	
The	technique	is	evaluated	on	MAWI	and	KDD99	datasets	and	results	show	that	
proposed	technique	obtained	good	results	using	unsupervised	learning	algorithms.	A	
flow-based	intrusion	detection	technique	using	block	based	neural	network	
(BBNN)	is	proposed	in	[24].	The	BBNN	are	constructed	using	Field	Programmable	Gate	
Arrays	(FPGAs)	for	efficient	and	real-time	processing	of	high	volume	of	data.	The	input	to	
a	neuron	block	in	BBNN	is	a	vector	of	values	while	output	is	calculated	using	sum	of	the	
weighting	vector	value	and	a	bias.	The	technique	is	evaluated	on	NetFlow	records	
generated	from	DARPA	dataset.	The	results	show	that	detection	rate	of	BBNN	is	same	as	
off	SVM,	but	running	time	is	quite	good	because	of	hardware-based	detection	engine.	
However,	the	results	are	obtained	from	a	packet-based	dataset	which	was	manually	
labeled.	

A	flow-based	anomaly	detection	system	using	Principle	component	analysis	(PCA)	is	
proposed	in	[25].	The	sketch	data	structure	is	used	to	store	the	hash	value	of	network	
traces.	The	hashed	network	traces	are	converted	into	entropy	time-series	and	forwarded	
to	a	PCA	classifier.	The	technique	is	evaluated	on	MAWI	dataset	[26].	The	proposed	
technique	show	improvement	in	results	when	compared	to	other	PCA	based	anomaly	
detectors	over	the	same	dataset.	

A	multi-layer	perceptron	(MLP)	with	heuristic	optimization	algorithm	is	suggested	in	
[27].	The	MLP	interconnection	weights	are	optimized	using	two	heuristic	techniques:	
Cuckoo	and	Particle	Swan	Optimization	with	Gravitational	Search	Algorithm	(PSOGSA).	
The	method	performs	classification	of	malicious	and	benign	IP	flows.	The	technique	is	
evaluated	on	the	dataset	used	in	[21]	and	flow	records	generated	from	DARPA.	The	
results	show	that	MLP	with	PSOGSA	optimization	gives	the	accuracy	of	99.55%	with	
0.21%	false	alarm	rate.	

[28]	have	proposed	a	two-stage	neural	network	for	intrusion	detection	using	IP	flow	
records.	Two	neural	network	structures,	multilayer	and	radial	basis	function	networks,	
have	been	used	to	compare	performance.	The	first	stage	detects	significant	changes	in	the	
traffic	that	could	be	an	attack.	If	an	attack	is	detected,	the	flow	data	is	forwarded	to	a	
second	stage	classifier	which	determines	the	type	of	attack.	The	technique	is	evaluated	on	
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Netflow	v5	records	generated	from	DARPA	dataset.	The	first	stage	neural	network	gives	
94.2%	detection	rate	and	3.4%	false	positive	rate.	For	second	stage,	best	detection	rate	of	
99.42%	is	also	obtained	with	false	positive	rate	of	2.6%.	

An	improved	nature-inspired	technique	for	optimum-path	forest	clustering	(OPFC)	is	
proposed	in	[29].	The	OPFC	is	a	k-NN	graph	in	which	nodes	are	weighted	using	a	
probability	density	function.	The	authors	used	different	optimization	techniques	
including	Bat	algorithm,	Gravitational	search,	Harmony	search	and	Particle	swarm	
optimization	to	determine	the	best	value	of	k.	The	approach	has	been	evaluated	on	a	
flow-based	dataset	and	results	show	that	optimum-path	forest	clustering	outperforms	k-
means	and	SOM	in	flow-based	detection.	

A	ward	clustering	approach	to	detect	the	dictionary	attacks	over	SSH	is	presented	in	
[30].	SSH	is	a	very	common	way	to	access	the	remote	servers	over	Internet	and	remain	a	
favorite	attack	target.	The	authors	used	two	innovations	of	employing	of	checking	the	
existence	of	connection	protocols,	measure	men	of	auth-packet	and	the	next	and	
identification	of	transit	point	of	each	sub-protocol.	The	best	results	include	99.90%	
detection	rate	for	unsuccessful	SSH	attack	attempts	and	92.80%	detection	of	successful	
SSH	attempts.	

Although	there	is	extensive	work	in	flow-based	intrusion	detection,	Our	approach	
significantly	differs	from	the	existing	work.	We	have	used	a	multi-stage	approach	that	
swiftly	discards	normal	flows	in	the	first	stage.	The	second	stage	only	process	malicious	
flows	and	no	resources	are	wasted	on	unnecessary	inspection	of	normal	flows.	The	first	
stage	uses	one-class	classification	with	malicious	flow	category	as	positive	class.	All	
normal	flows	are	considered	outliers.	Learning	on	malicious	flows	is	fast	and	efficient	
because	the	malicious	traffic	is	only	in	a	fraction	of	normal	traffic.	The	second	stage	
categorizes	the	IP	flows	in	the	different	alert	cluster	based	on	the	flow	characteristics.	
This	provides	deep	insight	into	the	malicious	traffic	and	under	attack	services.	Both	
classification	stages	use	unsupervised	learning,	therefore,	no	labeled	training	set	is	
required.	We	have	evaluated	the	proposed	framework	on	a	realistic	flow-based	dataset,	
therefore,	experimental	results	are	very	close	to	real-world	scenarios.	

Proposed	Approach	
NGN	encapsulate	a	variety	of	network	architectures,	services,	and	protocols	in	a	layered	
architecture.	The	IPFIX/Netflow	flow	records	provide	a	unified	way	to	access	traffic	flow	
information	from	the	next-generation	network.	These	flow	records	are	collected	from	the	
network	using	specialized	flow-enabled	network	devices.	The	flow	data	is	accessed	by	a	
flow	analysis	application	for	congestion	detection,	billing	and	network	security.	Figure	2	
shows	the	implementation	of	flow-based	intrusion	detection	system	in	NGN	framework.	
The	flow	information	is	collected	at	the	provider	edge	and	forwarded	to	the	intrusion	
detection	system.	Provider	edge	is	a	router	installed	at	the	boundary	of	the	network.	The	
intrusion	detection	system	analyzes	the	flow	records	passing	through	the	provider	edge	
and	raise	an	alarm	if	malicious	flows	are	detected.	

We	propose	a	two-stage	intrusion	detection	model	to	detect	malicious	traffic	in	next-
generation	networks	using	IP	flows.	Figure	3	shows	the	architecture	of	our	approach.	The	
model	analyzes	IP	flow	data	to	detect	malicious	network	traffic.	The	intrusion	detection	
model	consists	of	two	stages.	The	first	stage	detection	process	employs	a	one-class	
support	vector	machine(SVM).	The	one-class	classifier	only	identifies	malicious	IP	flows	
while	all	other	flows	are	discarded.	The	malicious	flows	are	forwarded	to	the	second	
stage	which	uses	self-organizing	map	to	group	similar	malicious	flows	into	different	
attack	clusters.	Every	attack	cluster	represents	a	specific	type	of	network	attack.	
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Fig	2.	Flow	monitoring	in	next-generation	network	architecture	

First	stage	detection	
The	first	stage	detection	separates	malicious	and	normal	flows	network	traffic.	Since	we	
have	only	one	class	of	interest	i.e.	malicious,	the	problem	is	solved	by	using	a	one-class	
classifier	[31].	The	one-class	classifier	recognizes	objects	of	only	one	class.	All	input	
objects	are	either	belong	to	a	target	(positive)	class	or	considered	outliers	[32].	One-class	
classification	is	used	when	training	dataset	for	only	one	class	(target	class)	is	available.	
The	training	datasets	for	other	classes	are	not	available	or	difficult	to	obtain.	

	
Fig	3.	Architecture	of	two-stage	flow-based	intrusion	detection	system	

The	one-class	classification	has	already	been	in	use	for	intrusion	detection	[33].	
Available	once	class	classification	includes	density	estimation,	reconstruction	methods	
and	support	vector	machines	(SVM).	We	use	SVM-based	one-class	classification	
techniques	because	SVM	techniques	give	accurate	results	for	intrusion	detection	[34,35].	
One-class	SVM	constructs	a	boundary	around	the	target	class	objects	in	the	form	of	a	
hyperplane.	The	hyperplane	is	constructed	in	the	feature	space	such	that	distance	from	
the	origin	is	maximum	[36].	

Mathematically,	we	assume	that	xi	is	a	training	example	from	dataset	X	=	{x1,...,xm}	in	
the	input	space.	Let	φ	is	a	mapping	function	which	maps	the	input	feature	space	X	to	a	
high	dimensional	feature	space	H.	The	dot	product	in	H	can	be	computed	using	following	
simple	kernel	function:-	



	

PLOS	 7/21	

	 K(x,y)	=	(φ(x).φ(y))H	 (1)	

To	separate	the	input	examples	from	the	origin	with	maximum	margin	using	a	
hyperplane,	following	quadratic	condition	is	applied	

	 	 (2)	
Subject	to	 	

(w.φ(xi))	≥	ρ	−	ξi,ξi	≥	0	 (3)	
The	ξi	is	a	slack	variable	used	to	penalize	the	outliers.	The	ρ	is	the	offset	and	w	is	

weight	vector.	The	ν	∈	(0,1)	is	a	user-defined	error	control	parameter	and	sets	an	upper	
bound	on	the	fraction	of	outliers	and	a	lower	bound	on	the	number	of	support	vectors.	A	
function	f(x)	is	defined	which	takes	the	value	+1,	if	x	falls	within	the	hyperplane	and	-1	
otherwise.	Solving	the	above	the	minimization	problem,	the	decision	function	for	
classification	is	defined:	

	 f(x)	=	sgn((w.φ(x))	−	ρ)	 (4)	

The	one-class	SVM	is	a	supervised	learning	algorithm	and	requires	labeled	training	
set	for	target	class	examples.	To	use	one-class	SVM	with	unsupervised	learning,	we	
employ	an	enhancement	proposed	by	[37].	The	enhancement	considers	the	normal	IP	
flows	in	the	training	dataset	as	outliers	and	removes	them	before	training.	The	enhanced	
SVM	introduce	a	variable	η	which	represents	an	estimate	that	an	instance	in	the	
unlabeled	training	set	belongs	to	the	target	class	(malicious	IP	flows)	or	is	an	outlier	
(normal	IP	flows).	The	η	has	value	near	to	0	for	all	outliers	and	eliminates	the	effect	of	
outliers	in	the	SVM	training.	Another	variable	β	controls	the	maximum	number	of	points	
that	are	allowed	to	be	outliers.	Using	enhancement	proposed	in	[37],	the	Equation	(2)	can	
be	written	as:	

	 	 (5)	
subject	to	eTη	≥	mβ	

The	minimization	problem	shown	in	Equation	5	is	a	non-convex	problem	which	means	
that	is	very	difficult	to	find	a	global	minimum	point.	The	problem	is	solved	using	the	
concave	convex	procedure	[37]:	

Let	g(h(w)),	where	h(w)	=	max(0,ρ	−	wφ(x))	and	g(u)	=	infβ∈0,1[βTµ],	using	concave	
duality,	the	objective	function	is	reformulated	as	follows:	

	 	 (6)	

where	g∗	is	the	concave	dual	of	g.	Evex	and	Ecave	are	concave	and	convex	differentiable	
functions.	

The	enhanced	one-class	SVM	requires	that	malicious	flows	in	unlabeled	training	
dataset	should	be	in	sufficiently	large	quantity	than	normal	flows.	To	ensure	that	majority	
of	flows	in	the	unlabeled	training	dataset	are	malicious,	we	propose	the	use	of	honeypot-
based	flow	collection	architecture	to	generate	the	unlabeled	dataset	for	the	
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Fig	4.	Malicious	IP	flow	collection	process	

	
Fig	5.	Training	of	One-class	SVM	using	malicious	flow	

training	of	one-class	SVM	[38].	Figure	4	shows	the	malicious	flow	collection	process	using	
honeypot.	The	honeypot	is	directly	connected	with	the	external	routing	interface.	The	
flow	records	collected	through	honeypot	are	mostly	malicious	[39]	and	may	also	contain	
some	non-malicious	traffic.	The	unlabeled	IP	flows	are	forwarded	to	the	one-class	SVM	
classifier.	These	malicious	flows	are	used	for	training	of	of	enhanced	one-class	SVM	as	
shown	in	Figure	5.	The	one-class	SVM	employs	an	outlier	detection	step	which	removes	
any	non-malicious	flows	from	the	dataset.	Only	malicious	flows	are	utilized	to	build	a	
malicious	flow	classification	profile.	

After	training,	the	one-class	SVM	is	used	to	process	the	IP	flows	being	extracted	from	
the	network.	The	one-class	SVM	separates	malicious	flows	from	the	network	traffic.	The	
malicious	flows	are	forwarded	to	the	second	stage	detection	process	while	normal	flows	
are	discarded.	

Second	stage	detection	
The	first	stage	detection	process	only	separates	malicious	IP	flows	from	the	network.	It	
does	not	associate	an	attack	class	with	malicious	flows.	These	malicious	flows	require	a	
manual	inspection	to	determine	the	attack	type	and	corrective	actions.	Although	
malicious	flows	are	in	a	small	fraction	as	compared	to	normal	network	traffic,	these	flows	
can	still	be	in	large	numbers	in	NGN	environment.	Manual	inspection	of	such	large	
number	of	flow	is	a	difficult	task.	To	group	similar	malicious	IP	flows	together,	we	employ	
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a	second	stage	detection	process.	The	second	stage	detection	process	automatically	place	
malicious	IP	flows	into	different	attack	clusters.	

We	use	self-organizing	map	(SOM)	for	clustering	of	malicious	IP	flows	into	different	
attack	clusters.	SOM	is	a	neural	network	consisting	of	an	input	and	output	neuron	layers.	
The	neurons	in	the	input	layer	inter-connects	with	neurons	in	output	layer	through	
unsupervised	competitive	learning	network	[40].	The	competitive	learning	is	a	winner-
take-all	approach	and	consists	of	two	steps;	competition	and	cooperation.	In	competition	
phase,	a	neuron	in	output	layer	is	selected	among	all	competing	neurons	using	minimum	
Euclidean	distance.	The	neuron	whose	weight	vector	comes	closest	to	the	input	vector	is	
declared	winner.	

Mathematically,	for	each	input	v	∈	V	,	i∗	neuron	is	declared	“winner”	if:	

	 i∗	=	argmini||wi	−	v||	 (7)	

In	cooperation,	the	weights	of	the	winner	and	its	neighboring	neurons	are	adjusted	
using	a	time	decay	function.	The	effect	of	weight	adjustment	is	high	at	the	origin	and	
decreases	with	the	distance	and	time.	The	range	of	the	neighborhood	is	defined	by	a	
Gaussian	function:	

	 	 (8)	
where	

σ0	=	Initial	value	of	neighborhood	range	t	and	tm=	The	
current	and	maximum	iteration	respectively	σ(t)	=	The	range	
of	neighborhood	at	t	stage.	
After	a	winning	neuron	is	selected,	the	weights	of	neighboring	neuron	vectors	are	

adjusted:	
	 wi(t	+	1)	=	wi(t)	+	η(t)σ(t)(v	−	wi(t))	 (9)	

In	above	equation,	t	represents	the	current	stage	and	η(t)	is	the	learning	rate.	The	
continuous	process	of	competition	and	cooperating	marks	the	cluster	on	topographic	
self-organizing	map.	Each	neuron	on	the	output	layer	denotes	the	resultant	clusters.	The	
number	of	output	clusters	has	to	be	set	before	the	clustering	by	a	user	defined	parameter	
k.	

The	SOM	requires	a	training	set	of	malicious	IP	flows	to	create	profiles	for	different	
attack	clusters.	We	define	the	number	of	attack	cluster	and	corresponding	labels	using	
the	domain	knowledge	of	the	network	environment.	We	manually	give	an	attack	label	to	
all	clusters	in	the	SOM	by	analyzing	the	IP	flows	in	the	cluster.	During	clustering	process,	
all	incoming	flows	are	compared	with	all	clusters	and	the	label	of	the	closest	cluster	is	
given	to	the	malicious	IP	flow.	

The	datasets	
The	proposed	model	has	been	evaluated	on	three	flow-based	datasets.	The	first	dataset	
was	developed	in	University	of	Twente	and	is	publicly	available	[22].	We	have	created	the	
second	dataset	ourselves	by	combining	IP	flows	of	various	malware	and	Advance	
Persistent	Threats	(APTs)	with	normal	flow	traffic.	The	third	dataset	is	a	consist	of	SIP	
traffic.	The	IP	flow	records	in	all	datasets	are	in	Netflow	v5	format.	Netflow	v5	is	a	widely	
used	flow	export	and	collection	protocol	and	supported	by	all	major	hardware	
manufacturers	[41].	We	have	used	9-tuple	flow	records	in	the	experiment.	The	detail	of	
attributes	in	the	9-tuple	flow	records	is	given	in	Table	1.	
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Table	1.	Detail	of	attributes	for	Netflow	v5	IP	flow	records	
Attribute	 Description	

Source	IP	 The	IP	Address	of	the	source.	
Destination	IP	 The	destination	IP	address	
Packets	 Number	of	packets	in	flow	
Octets	 Number	of	bytes	in	flow	
Duration	 The	duration	of	flow	in	milliseconds	
Source	Port	 Source	port	number	
Destination	Port	 Destination	port	number	
TCP	Flags	 Cumulative	OR	of	TCP	flags	
Protocol	 The	transport	layer	protocol	such	6=TCP,	17=UDP	

Table	2.	Detail	of	IP	flows	in	Sperotto’s	dataset	
Alert	Type	 No.	of	IP	Flows	 Category	

SSH	 13942629	 Malicious	
FTP	 13	 Malicious	
HTTP	 9798	 Malicious	
AUTH-IDENT	 191339	 Side	effect	
IRC	 7383	 Side	effect	
OTHERS	 18970	 Side	effect	

Sperotto’s	dataset	
The	Sperotto’s	dataset	consists	of	14.2M	IP	flow	records	collected	through	a	”Honeypot”	
deployment	in	University	of	Twente	network	[22].	The	honeypot	was	directly	connected	
to	internet	to	ensure	maximum	exposure	to	attacks.	Three	common	services	SSH,	HTTP	
and	FTP	were	run	over	the	honeypot.	Information	about	the	flows	is	extracted	from	the	
log	files	of	receptive	service.	Part	of	the	traffic	in	dataset	is	the	side	effect	of	alerts	and	is	
not	considered	malicious.	During	the	flow	collection,	one	hacker	installed	an	IRC	proxy	
over	the	honeypot.	The	traffic	generated	due	to	IRC	is	also	non-malicious.	The	alert	types	
and	number	of	flows	corresponding	to	each	alert	type	are	shown	in	Table	2.	

The	four	time	related	attributes	start-time	start-msec,	end-time	and	end-msec	in	the	
original	dataset	are	computed	to	a	single	attribute	of	duration	in	milliseconds	[21].	Also	
the	dataset	itself	do	not	contain	any	normal	traffic,	we	have	included	a	large	number	of	
normal	flows	in	the	dataset.	The	normal	flows	have	been	collected	by	ourselves	from	a	
medium-size	network	of	legitimate	users.	The	behavior	of	users	during	the	normal	flow	
collection	period	include	browsing	web,	streaming	videos,	online	games	and	remote	
server	access.	

The	Sperotto’s	dataset	is	very	large,	therefore	we	have	extracted	a	subset	of	IP	flows	
from	the	dataset.	Table	3	gives	detail	of	IP	flows	in	the	training	and	test	dataset.	The	
training	dataset	contains	10,000	malicious	flows	and	500	normal	flows.	The	testing	
dataset	consists	of	11740	malicious	and	124240	normal	IP	flows.	

Table	3.	Detail	of	IP	flow	records	in	Sperotto’s	dataset	
Training	dataset	 Testing	dataset	
Malicious	 Normal	 Malicious	 Normal	
10000	 500	 11740	 124240	

Table	4.	Detail	of	IP	flow	records	in	Malware	and	APT	dataset	
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Training	dataset	 Testing	dataset	

Malicious	 Normal	 Malicious	 Normal	
3524	 350	 5286	 124367	

Table	5.	Detail	of	IP	flows	-	SIP	dataset	
Traffic	Type	 No.	of	IP	Flows	 Category	
InviteFlood	SIP	traffic	 6496	 Malicious	
Splitter	SIP	traffic	 3927	 Malicious	
Normal	SIP	traffic	 7901	 Normal	

APT	and	Malware	dataset	
The	Sperotto’s	dataset	has	a	limited	variety	of	malicious	traffic.	Most	of	the	malicious	
traffic	only	consists	of	SSH	attacks	flows.	To	evaluate	the	performance	of	proposed	IDS	
against	modern	attacks,	we	experimented	with	latest	malware	and	advance	persistent	
threats	(APTs).	We	have	generated	IP	flow	records	for	different	malware	and	APTs	using	
packet	capture	files	obtained	from	Contagio	Malware	Dump1.	We	have	used	Sality,	
Asprox,	TBot	and	Nuclear	malware	traffic.	The	IP	flow	records	of	these	malware	and	APTs	
are	combined	with	normal	flow	traffic	used	earlier	with	Sperotto’s	dataset.	Table	4	shows	
the	detail	of	IP	flow	records	in	training	and	test	dataset	.	The	training	dataset	contains	
3524	malicious	and	350	normal	flow	records	while	test	dataset	has	5286	and	124387	
flow	records.	

SIP	dataset	
The	third	dataset	is	a	labeled	VoIP	dataset	consisting	of	SIP	packet	traces	[42].	The	
dataset	has	two	sets	of	SIP	traces	collected	from	two	different	VoIP	testbed	networks.	The	
first	testbed	uses	Asterisk	PBX	server	and	the	second	testbed	uses	the	OpenSIP	proxy	
with	RADIUS	servers.	We	have	only	considered	the	OpenSIPs	traces	for	evaluation	in	our	
experiment.	The	testbed	configuration	includes	OpenSIP	proxy	and-and	normal	and	
malicious	traffic	generators.	The	normal	traffic	is	emulated	by	groups	of	VoIP	bots.	Each	
group	of	bots	connects	with	the	internal	and	external	interface	of	the	SIP	proxy	
respectively.	The	malicious	traffic	is	generated	using	the	Inviteflood	and	Splitter	attack	
tools.	The	dataset	is	available	in	the	form	of	SIP	packet	traces.	We	have	used	ntops’	
nProbes	tool	to	extract	Netflow	v5	based	flow	records	from	the	SIP	packet	traces.	The	
detail	of	IP	flow	records	in	the	dataset	is	given	in	Table	5.	

Results	and	Discussion	
Experimental	Setup	
We	have	designed	our	experimental	setup	using	R	and	Waikato	Environment	for	

																																																																				

1	http://contagiodump.blogspot.com/	

Table	6.	Test	and	training	dataset	-	SIP	dataset	
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Knowledge	Analysis	(WEKA).	In	first	step,	we	have	apply	the	used	the	R	tool	remove	

Training	dataset	 Testing	dataset	
Malicious	 Normal	 Malicious	 Normal	
	 2083	 300	 10423	 7901	

Table	7.	Confusion	Matrix	for	outlier	detection	during	one-class	SVM	training	Sperotto’s	
dataset	

Classified	as	 Malicious	 Normal	(Outliers)	

Malicious	 9161	 839	
Normal	(Outliers)	 8	 492	

Table	8.	First	stage	detection	results	-	Sperotto’s	dataset	
Recall	 Precision	 False	positive	rate	 F1-score	

0.9991	 0.9001	 0.1040	 0.9470	
the	outlier	from	one-class	SVM	training	set.	The	majority	of	IP	flows	in	the	unlabeled	
dataset	are	malicious	with	some	normal	flows.	The	enhanced	one-class	SVM	marks	the	
normal	flows	in	the	training	dataset	as	outliers	and	does	not	use	them	during	learning.	
The	self-organizing	map(SOM)	in	the	second	stage	detection	process	also	uses	malicious	
flows	to	create	different	attack	clusters.	We	manually	set	the	number	of	attack	cluster	in	
SOM	to	six	using	domain	knowledge	of	the	evaluation	environment.	Each	alert	cluster	
relates	to	specific	attack	types	or	a	service	that	is	under	attack.	

Evaluation	measures	
Bhuyan	et	al.	[43]	have	suggested	a	number	of	measures	for	evaluation	of	intrusion	
detection	systems.	We	use	following	evaluation	measures:precision,	recall	and	F1-score	
are	used	to	obtain	experimental	results.	Precision	and	recall	measures	are	calculated	as	
follows:	

	 	 (12)	

Sperotto’s	dataset	results	
In	the	first	experiment,	we	evaluate	the	proposed	IDS	on	Sperotto’s	dataset.	Both	
detection	stages	of	the	IDS	use	the	dataset	shown	in	Table	3	for	learning.	Table	7	shows	
the	confusion	matrix	for	outlier	detection	process	in	one-class	SVM	training.	The	one-
class	SVM	successfully	removes	98.40%	normal	flows	from	the	training	dataset.	The	
remaining	9161	IP	flows	out	of	10000	are	used	by	the	one-class	SVM	for	learning	the	
malicious	behavior.	The	six	attack	clusters	include	the	incoming	and	outgoing	flow	traffic	
for	SSH	and	HTTP	services	and	two	additional	clusters	for	placement	of	unknown	alerts	
and	miss-classified	IP	flows.	

number	of	true	positives	
Precision	=	number	of	true	positives	+	number	of	false	positives	

(10)	

number	of	true	positives	
Recall	=	number	of	true	positive	+	number	of	false	negatives	

F1-score	is	defined	as	the	harmonic	mean	of	precision	and	recall	values:	

(11)	
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We	process	the	test	dataset	shown	in	Table	3	after	learning	the	malicious	IP	flow	
behavior.	In	the	first	stage	detection	process,	the	one-class	SVM	marks	11730	IP	flows	as	
malicious	out	of	11740	total	IP	flows.	The	IP	flows	marked	malicious	also	contain	1301	
normal	flows	as	false	positives.	Table	8	shows	the	precision,	recall,	false	positive	rate	and	
F1-score	for	one-class	SVM	detection	process.	The	results	show	that	one-class	SVM	gives	
very	good	performance	in	detection	of	malicious	IP	flows	and	achieves	an	F1-score	of	
0.9470.	
Table	9.	Clustering	malicious	IP	flows	in	second	stage	process	-	Sperotto’s	dataset	

Alert	Cluster	 Actual	IP	Flows	 IP	flows	in	attack	cluster	

HTTP	IN	 2127	 2154	
HTTP	OUT	 2113	 2085	
SSH	IN	 4140	 3992	
SSH	OUT	 3360	 4006	
Other-I	 0	 770	
Other-II	 0	 24	
Total	 11740	 13031	

	
	 HTTP	IN	 HTTP	OUT	 SSH	IN	 SSH	OUT	 Other-I	 Other-II	

Fig	6.	SOM	Clustering	results	comparison	-	Sperotto’s	dataset	

The	IP	flows	identified	as	malicious	by	one-class	SVM	in	first	stage	are	forwarded	to	
second	stage.	The	second	stage	detection	process	categorizes	the	IP	flows	in	different	
attack	clusters.	The	total	number	of	IP	flows	marked	malicious	by	first	stage	are	13031	
including	1301	false	positives.	The	SOM	process	all	malicious	flows	and	places	them	in	
the	closest	attack	cluster.	The	clustering	results	and	the	actual	number	of	flows	in	every	
cluster	are	given	in	Table	9.	

The	HTTP	IN,	HTTP	OUT	and	SSH	IN	categories	remain	consistent	and	similar	number	
of	IP	flows	are	available	in	the	output	clusters.	The	actual	number	of	flows	in	HTTP	IN	
category	are	2127	while	the	output	cluster	contains	2154	flows.	Therefore	only	27	IP	
flows	are	placed	incorrectly.	The	HTTP	OUT	cluster	has	2113	flows	in	input	dataset	and	
its	output	cluster	contains	2085	with	28	IP	flows	placed	in	incorrect	cluster.	The	SSH	IN	
cluster	has	4140	flows	in	the	input	set	while	output	cluster	contains	3992	flows.	In	this	
case,	148	IP	flows	have	been	incorrectly	classified.	The	actual	number	flows	for	SSH	OUT	
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category	is	3360	while	the	output	cluster	has	4006	IP	flows.	The	SSH	OUT	category	has	
highest	number	of	incorrectly	classified	flows	i.e.	646.	Also	770	and	24	IP	flows	are	
placed	in	Other-I	and	II	clusters	respectively.	This	relatively	high	rate	of	miss	
classification	is	due	to	the	1301	false	positives	(normal	IP	flows)	of	first	stage	detection	
process.	The	comparison	of	clusters	with	actual	flows	in	the	input	set	is	given	in	Figure	6.	
Table	10.	Confusion	Matrix	for	Outlier	detection	during	one-class	SVM	training	-	
Malware	and	APT	dataset	

Classified	as	 Malicious	 Normal	(Outliers)	

Malicious	 2857	 330	
Normal	(Outliers)	 20	 667	

Table	11.	First	stage	detection	results	-	Malware	and	APT	dataset	
Recall	 Precision	 False	Positive	rate	 F1-Measure	

0.9876	 0.9170	 0.017	 0.9507	
Malware	and	APT	Dataset	results	
In	the	second	experiment,	we	have	used	malware	and	APT	flow-based	dataset	for	
evaluation.	The	two-stage	intrusion	detection	model	is	trained	using	the	dataset	shown	in	
Table	4.	The	enhanced	one-class	SVM	removes	the	normal	flows	from	the	training	dataset	
leaving	only	the	malicious	flows.	Table	10	shows	the	confusion	matrix	for	outlier	
detection	process	in	one-class	SVM	training.	The	one-class	SVM	successfully	removes	
94.28%	normal	flows	from	the	training	dataset.	The	remaining	2857	IP	flows	are	used	by	
the	one-class	SVM	and	SOM	for	learning	the	malicious	behavior	and	creation	of	attack	
clusters.	

The	trained	one-class	SVM	is	presented	with	a	test	dataset	of	129654	IP	flows.	It	
classifies	5226	IP	flows	as	malicious	out	of	total	5286	IP	flows.	The	detected	malicious	
flows	also	include	434	normal	flows	as	false	positives.	Table	11	shows	the	precision,	
recall,	false	positive	rate	and	F1-score	values.	The	one-class	SVM	achieves	an	F1-measure	
of	0.9507	and	successfully	detects	malicious	IP	flows.	The	results	again	show	that	one-
class	SVM	is	suitable	for	detection	of	malicious	flows.	

The	malicious	flows	detected	in	first	stage	are	forwarded	to	SOM	clustering	algorithm	
in	second	stage	detection	process.	The	number	of	malicious	flows	is	5226	including	434	
false	positives.	We	manually	set	the	number	of	attack	cluster	in	SOM	to	six	which	include	
four	clusters	for	malware	and	APTs	and	two	additional	clusters	to	place	the	un-clustered	
IP	flows.	The	SOM	places	the	malicious	IP	flows	into	closet	matching	attack	clusters.	The	
clustering	results	and	the	actual	number	of	flows	in	every	cluster	are	given	in	Table	12.	

1312	out	of	1669	flows	of	Sality	malware	are	placed	in	correct	cluster.	The	Asprox	
attack	cluster	has	3649	flows	while	the	actual	number	of	flows	are	3336.	Some	IP	flows	of	
Sality	malware	are	placed	into	Asprox	cluster	because	Asprox	malware	traffic	is	not	
uniform.	The	false	positives	of	first	stage	detection	process	are	separated	into	Other-I	and	
Other-II	clusters.	Figure	7	compares	the	result	of	clustering	with	actual	IP	flows.	

Table	12.	SOM	clustering	results	-	Malware	and	APT	dataset	
Alert	Cluster	 Actual	IP	Flows	 IP	flows	in	attack	cluster	

Sality	outgoing	 1669	 1312	
Asprox	outgoing	 3336	 3649	
TBot	outgoing	 133	 200	
Nuclear	outgoing	 88	 64	
Other-I	 0	 2	
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Other-II	 0	 59	
Total	 5286	 5226	

	
	 Sality	OUT	Asprox	OUT	TBot	OUT	Nuclear	OUT	 Other	I	 Other	II	

Fig	7.	Malware	and	APT	clustering	results	comparison	

Table	13.	Confusion	Matrix	for	Outlier	detection	during	one-class	SVM	training	-	SIP	
dataset	

Classified	as	 Malicious	 Normal	(Outliers)	

Malicious	 1701	 91	
Normal	(Outliers)	 30	 170	

SIP	dataset	results	
In	the	third	experiment,	we	have	used	the	SIP	dataset,	given	in	Table	6,	for	evaluation	of	
IDS.	In	first	stage	detection,	the	enhanced	one-class	SVM	uses	the	unlabeled	training	
dataset	for	learning.	The	one-class	SVM	narks	the	normal	flows	as	outliers	and	does	not	
use	them	from	learning.	Table	13	shows	the	confusion	matrix	for	outlier	detection	
process.	The	one-class	SVM	successfully	removes	94.05%	normal	flows	from	the	training	
dataset.	The	remaining	IP	flows	are	used	by	the	one-class	SVM	for	learning	the	malicious	
behavior.	

After	training,	the	one-class	SVM	process	the	test	dataset.	The	one-class	SVM	correctly	
marks	10339	IP	flows	as	malicious	out	of	10456	total	malicious	IP	flows.	There	is	no	
normal	flow	marked	as	malicious	thus	the	false	positive	rate	is	zero.	Table	14	shows	the	
precision,	recall,	false	positive	rate	and	F1-score	values	for	the	first	stage	detection.	
Figure	8	compares	the	results	of	clustered	flows	with	actual	flows.	

The	malicious	flows	identified	in	first	stage	detection	are	forwarded	to	the	second	
stage.	The	second	stage	uses	SOM	for	clustering	of	malicious	flows	according	to	attack	
type.	We	have	used	the	same	training	dataset	used	in	first	stage	for	training	of	SOM.	Since	
there	are	two	types	of	malicious	flows	in	the	dataset,	we	have	set	the	number	of	clusters	
to	four.	The	two	additional	cluster	are	used	to	contain	the	flows	which	SOM	fails	to	
associate	with	any	attack	type.	The	results	of	clustering	process	are	given	in	Table	15.	The	
first	cluster	consist	of	malicious	flows	belonging	to	SIP	flood.	The	SOM	

Table	14.	First	stage	detection	results	-	SIP	dataset	
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Recall	 Precision	 FPR	 F1-Measure	

0.9920	 0.9937	 0.00	 0.9928	
Table	15.	SOM	clustering	results	-	SIP	dataset	

Alert	Cluster	 Actual	IP	Flows	 Clustering	results	
SIP	Flood	 6224	 4848	
SIP	Spitter	 4815	 4834	
Other-I	 0	 162	
Other-II	 0	 495	
Total	 10339	 10339	

	
Fig	8.	SOM	Clustering	results	comparison	-	SIP	dataset	

is	able	to	cluster	4848	flows	out	of	total	6224	flows.	The	actual	number	of	in	second	
attack	cluster	are	4815.	However	the	resulting	cluster	consist	of	4834	flows	which	also	
includes	some	flows	belonging	to	first	attack	cluster.	The	number	of	un-clustered	flows	
are	657	which	are	placed	in	Other-I	and	Other-II	cluster.	

Comparison	with	other	Intrusion	Detection	Systems	
We	have	compared	the	performance	of	our	IDS	with	other	two-stage	flow-based	
approaches	proposed	in	[28]	and	[23].	The	comparison	of	results	using	F1-measure	and	
false	positive	rate	is	given	in	Table	16.	The	comparison	shows	that	our	technique	
outperforms	the	other	techniques	in	first	stage	detection.	In	second	stage	detection,	our	
technique	gives	better	results	than	[23].	However,	the	technique	proposed	in	[28]has	
higher	detection	rate	than	our	technique	due	to	the	use	of	supervised	learning.	

Table	16.	Comparison	of	results	with	other	approaches	
Detection	stage	 Performance	

measure	
[28]	(DARPA	dataset)	 [23]	(KDD99	dataset)	 Our	approach	

Sperotto	
dataset	

APT	 and	
malware	
dataset	

SIPFlood	 SIPSpitter	 Other-I	 Other-II	

0	

1	,	000	

2	,	000	

3	,	000	

4	,	000	

5	,	000	

6	,	000	
Actual	IP	Flows	

Clusters	of	10339	IP	fl	 ows	
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First	stage	detection	
Detection	rate	 0.9420	 0.90	 0.99	 0.9876	
False	positive	rate	 0.034	 0.035	 0.1040	 0.017	

Second	stage	detection	
Detection	rate	 0.9942	 0.90	 0.95	 0.93	
False	positive	rate	 0.32	 N/A	 N/A	 N/A	

Discussion	
Our	proposed	IDS	uses	IP	flows	for	intrusion	detection	in	next-generation	networks.	IP	
flows	consist	of	a	fraction	of	complete	network	traffic.	Use	of	IP	flow	reduces	the	amount	
of	data	processed	by	the	intrusion	detection	system.	Therefore,	our	flow-based	IDS	is	
efficient	as	compared	to	traditional	packet-based	intrusion	detection	systems.	Another	
advantage	of	flow-based	inspection	is	independence	of	detection	process	from	underlying	
protocols	and	network	architecture	

We	have	designed	a	two-stage	intrusion	detection	framework.	The	first	stage	uses	a	
computational	fast	detection	process	and	only	recognizes	malicious	flows.	In	the	first	
stage,	the	normal	flows	are	discarded	while	malicious	flows	are	forwarded	to	the	second	
stage.	Since	malicious	flows	are	in	small	quantity	as	compared	to	normal	flows,	the	
second	stage	can	use	a	computationally	expensive	technique	for	detail	intrusion	
detection.	The	detail	intrusion	detection	process	gives	deep	insights	into	the	malicious	
traffic	and	associates	an	attack	type	with	the	malicious	flows.	The	application	of	
computationally	expensive	intrusion	detection	techniques	is	difficult	in	traditional	single-
stage	detection	systems	due	to	the	processing	of	both	normal	and	malicious	flows.	
Therefore	two-stage	detection	is	efficient	as	compared	to	single-stage	detection.	

The	techniques	used	in	both	detection	stages	are	based	on	unsupervised	learning.	
Therefore,	no	labeled	datasets	are	required	for	training	of	detection	algorithms.	

Our	two-stage	detection	uses	an	enhanced	one-class	SVM	in	the	first	stage.	One-class	
SVM	techniques	give	better	results	for	intrusion	detection	in	malicious	IP	flow	records.	
However,	the	accuracy	of	one-class	SVM	is	very	sensitive	to	the	value	of	ν	parameter	[35].	
The	ν	is	an	upper	bound	on	the	fraction	of	outliers	(normal	IP	flows)	and	lower	bound	on	
the	number	of	support	vectors.	We	have	experimented	with	different	values	of	ν	to	obtain	
best	possible	results.	The	optimization	of	ν	parameter	is	also	a	promising	research	area,	
and	different	techniques	have	been	proposed	to	find	out	the	optimal	value	of	ν	[44].	A	
limitation	of	enhanced	one-class	SVM	is	the	requirement	that	malicious	flows	in	the	
training	set	are	in	sufficiently	higher	than	normal	flows.	In	second	stage	detection,	we	
have	used	Self-organizing	maps(SOM)	for	automatic	clustering	of	malicious	IP	flows.	The	
results	show	that	SOM	correctly	places	the	majority	of	IP	flows	in	the	correct	cluster.	
However,	domain	knowledge	of	the	traffic	is	required	to	determine	the	number	and	label	
of	attack	clusters.	Our	system	uses	unsupervised	learning	techniques,	and	no	labeled	
datasets	are	required	for	training	

We	have	evaluated	the	proposed	IDS	on	three	flow-based	datasets.	We	also	used	
multiple	evaluation	measures	for	comparison	of	results.	The	overall	results	demonstrate	
that	our	proposed	technique	is	accurate	in	the	separation	of	malicious	flows	and	grouping	
of	malicious	IP	flows	in	different	attack	clusters.	

Conclusion	
In	this	paper,	we	have	proposed	a	two-stage	flow-based	intrusion	detection	model	for	
next-generation	networks.	Next-generation	networks	provide	voice,	video	and	data	
services	on	a	converged	IP-based	network.	Our	flow-based	intrusion	detection	system	is	
particularly	useful	in	the	context	of	next-generation	networks	(NGN)	where	different	
networks	are	converged	to	an	all	IP	platform.	Our	proposed	model	processes	the	IP	flow	
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data	in	a	two-stage	detection	process.	The	first	stage	uses	a	one-class	SVM	for	efficient	
detection	of	malicious	flows.	The	one-class	SVM	discards	all	normal	traffics	and	forward	
the	malicious	traffic	to	second	stage	detection	process.	Due	to	two-stage	intrusion	
detection	process,	only	malicious	flows	are	analyzed	in	detail.	Another	important	feature	
of	our	system	is	the	use	unsupervised	learning.	The	unsupervised	learning	does	not	need	
a	labeled	training	datasets	which	are	difficult	to	obtain	for	next	generation	networks.	We	
have	validated	the	approach	on	two	flow-based	datasets	and	results	show	that	proposed	
model	gives	promising	results.	In	future,	the	proposed	intrusion	detection	model	can	be	
implemented	using	additional	flow	attributes.	The	IPFIX	/Netflow	v9	define	around	280	
flow	attributes	which	provide	in-depth	information	about	the	network	traffic.	These	
additional	attributes	can	be	used	to	build	intrusion	detection	schemes	for	detection	of	
novel	and	stealth	attacks.	
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