A Two-stage Flow-based Intrusion Detection Model For

Next-generation Networks

Muhammad Fahad Umer^{1*¶}, Muhammad Sher^{1¶}, Yaxin Bi^{2¶},

- ¹ Department of Computer Science and Software Engineering, International Islamic University, Islamabad, Pakistan
- ² School of Computing, Faculty of Computing, Engineering and the Built Environment, Ulster University, UK

[¶]These authors contributed equally to this work.

*Corresponding Author Email : fahad.phdcs62@iiu.edu.pk

Abstract

The next-generation network provides state-of-the-art access-independent services over converged mobile and fixed networks. Security in the converged network environment is a major challenge. Traditional packet and protocol-based intrusion detection techniques cannot be used in next-generation networks due to slow throughput, low accuracy and their inability to inspect encrypted payload. An alternative solution for protection of next-generation networks is to use IP flow records for detection of malicious activity in the network traffic. IP flow records are independent of access networks and user applications. In this paper, we propose a two-stage flow-based intrusion detection system for next-generation networks. The first stage uses an enhanced unsupervised one-class support vector machine which separate malicious IP flows from normal network traffic. The second stage uses a self-organizing map which automatically groups malicious IP flows into different alert clusters. We validated the proposed approach on two flow-based datasets and obtained promising results.

Introduction

Next-generation network (NGN) is an open platform which provides communication, multimedia, and business services through a comprehensive IP-based network architecture. NGN enables the user to use multiple QoS-enabled broadband technologies for service provisioning. These services used in multiple business and social applications. [1], [2] NGN services are provided on converged mobile and fixed networks. The key aspect in NGN architecture is the separation of service, control, transport and access functions in different layers. These layers and interconnected with each other through well-defined interfaces. [3] Fig 1 shows the architecture of next-generation network. The user equipment (UE) is connected to the access layer. Access network layer is a combination of legacy networks e.g. PSTN, GSM, and ISDN. The access layer is connected with core layer. The core layer consists of high-end routers and switches. This layer uses IP network to forward network traffic to control layer. The control layer comprises of Soft-switches and performs call control and media gateway functions for NGN services. The service provisioning layers include various multimedia and communication NGN services e.g. VoIP, IPTV, VoD and VPN. [4]

Next Generation Networks (NGNs) architecture is open for different types of access networks and user services. However, the convergence of heterogeneous network architectures can have serious security implications. [5], [6] Traditional security approaches cannot fully counter the intrusion attacks. [7] To complement traditional security measures, intrusion detection system (IDS) came in and become an integral part of computer networks. [8] Intrusion detection systems analyze host logs or network activities and raise an alarm if the suspicious behavior is detected.

Fig 1. Next-generation network architecture

Despite extensive research in intrusion detection [9], a large number of successful cyber attacks on government and corporate intranets have been observed recently. The Global Information Security State Survey [10] gathers that the total number of security incidents detected by respondents climbed to 42.8 million in 2014, an increase of 48% from 2013. The rising trend of attacks shows that existing intrusion detection systems still need improvement, and new approaches are imperative for defense against cyber attacks. [11].

The accuracy and efficiency of intrusion detection systems become more important in the context of next-generation networks because the NGN inherits the vulnerabilities of access networks [12]. In this paper, we have proposed a flow-based intrusion detection model for next-generation networks. Our approach uses two-stage process for detection of malicious activity in network traffic. The first stage detection process uses one-class support vector machine (SVM) and determines if a network flow is malicious or normal. Although one-class SVM is supervised learning technique, we employ an enhanced version of one-class SVM which support unsupervised learning. The second stage detection process employs a self-organizing map (SOM) to automatic clustering of malicious flows in different attack classes. We validated the proposed approach on two flow-based datasets and obtained promising results.

The remainder of this paper is organized as follows. Section 2 gives an overview of flow-based intrusion detection. Section 3 describes the existing work in flow-based intrusion detection systems. Section 4 gives a detail description of our proposed approach. The datasets used for evaluation of the proposed approach are discussed in

section 5. We discuss experimental results in section 6. Finally, the conclusion is presented in Section 7.

Flow-based intrusion detection

Traditional intrusion detection systems use deep packet or state-full protocol inspection to detect malicious activity in the network traffic. Deep packet inspection (DPI) techniques scan the packet beyond the protocol header and inspect its content. DPI techniques provide complete visibility of network traffic and filter the packet content for malware, virus or any other attack traces. [13] However, deep-packet inspection becomes impractical for high-speed backbone links [14]. Also, deep-packet inspection is not possible when packet content is encrypted. In state-full protocol inspection, the complete semantics of the protocol are checked against the specification and any out of range value is considered an anomaly. State-full protocol inspection techniques are protocol specific and cannot be generalized for unknown protocols. Also, both packet and state-full protocol inspection techniques are computationally costly and become a performance bottleneck [9,15].

Packet and protocol-based intrusion detection systems cannot be used in nextgenerations networks due to their limitations [16,17]. An alternative solution for protection of next-generation networks is flow-based intrusion detection [15]. The flowbased intrusion detection systems use IP flow records as input and try to find out if network traffic is normal or malicious [18]. IP flow records contain aggregated information of related network packets. An IP flow is defined as "a set of packets or frames passing an observation Point in the network during a certain time interval. All packets belonging to a particular Flow have a set of common properties". [19] IP flow record has a number of applications including network traffic accounting, billing, monitoring and security.

The IP flows are collected from the network using a flow export and collection protocol. The process of flow export and collection is controlled by a flow export protocol. The most common flow collection and export protocol is Cisco's Netflow. Netflow was adapted by IETF and has been formalized in the form of IP Flow Information Exchange (IPFIX) [19]. The deployment of IPFIX/Netflow consists of following processes:-

Packet capturing at observation point. Observation points collect the packets being passed through a specific interface. The observation points can be standalone devices or a part of flow-enabled routers. The observation process forwards the packet to a flow metering and export process

Flow metering and export process. The metering process time-stamps the packets and aggregates them into IP flows. The flows can be sampled or filtered according to the requirements. These flows are forwarded to an export process which exports the flows in IPFIX record. These IPFIX records are forwarded to a collector process.

Collecting process. The collecting process receives IPFIX records from exporting process. There can be multiple collecting processes receiving IPFIX records from different exporting processes. Accordingly there can be multiple exporting processes sending IPFIX records to multiple collecting processes. The collecting process store and pre-process the flow data for the flow analysis and monitoring application.

Flow-based intrusion detection systems are also based on the generic intrusion detection model presented in [20]. The incoming IP flows are collected from the network

using observation points (event-boxes). These IP flows can be optionally stored in a flow database (database-boxes). Then IP flows are forwarded to an analysis box for evaluation. The analysis box uses anomaly detection techniques for attack detection. If any attack is detected, a response is initiated through the response-boxes.

Related Work

Flow-based intrusion detection is an active area of research. A number of flow-based techniques using statistical and machine learning methods for detection of IP flows have been proposed. [21] proposed a flow-based intrusion detection system using SVM based one-class classification. The one-class SVM (OC-SVM) uses malicious IP flows as target class. Learning on malicious flows is fast and efficient. After learning, the OC-SVM detects the malicious flows while normal flows are discarded. A flow-based dataset developed by [22] is used for evaluation. The OC-SVM gives very good results with 98% accuracy and 0% false alarm rate. These malicious flows can be further analyzed for identification of attack type.

A network anomaly detection system using multiple unsupervised clustering techniques is presented in [23]. The technique uses a change detection algorithm to detect the malicious flows. The malicious flows are clustered in partitions using subspace and density-based clustering. The clusters are also ranked in order of abnormality and all clusters above the detection threshold are considered anomalies. The technique is evaluated on MAWI and KDD99 datasets and results show that proposed technique obtained good results using unsupervised learning algorithms. A flow-based intrusion detection technique using block based neural network (BBNN) is proposed in [24]. The BBNN are constructed using Field Programmable Gate Arrays (FPGAs) for efficient and real-time processing of high volume of data. The input to a neuron block in BBNN is a vector of values while output is calculated using sum of the weighting vector value and a bias. The technique is evaluated on NetFlow records generated from DARPA dataset. The results show that detection rate of BBNN is same as off SVM, but running time is quite good because of hardware-based detection engine. However, the results are obtained from a packet-based dataset which was manually labeled.

A flow-based anomaly detection system using Principle component analysis (PCA) is proposed in [25]. The sketch data structure is used to store the hash value of network traces. The hashed network traces are converted into entropy time-series and forwarded to a PCA classifier. The technique is evaluated on MAWI dataset [26]. The proposed technique show improvement in results when compared to other PCA based anomaly detectors over the same dataset.

A multi-layer perceptron (MLP) with heuristic optimization algorithm is suggested in [27]. The MLP interconnection weights are optimized using two heuristic techniques: Cuckoo and Particle Swan Optimization with Gravitational Search Algorithm (PSOGSA). The method performs classification of malicious and benign IP flows. The technique is evaluated on the dataset used in [21] and flow records generated from DARPA. The results show that MLP with PSOGSA optimization gives the accuracy of 99.55% with 0.21% false alarm rate.

[28] have proposed a two-stage neural network for intrusion detection using IP flow records. Two neural network structures, multilayer and radial basis function networks, have been used to compare performance. The first stage detects significant changes in the traffic that could be an attack. If an attack is detected, the flow data is forwarded to a second stage classifier which determines the type of attack. The technique is evaluated on

Netflow v5 records generated from DARPA dataset. The first stage neural network gives 94.2% detection rate and 3.4% false positive rate. For second stage, best detection rate of 99.42% is also obtained with false positive rate of 2.6%.

An improved nature-inspired technique for optimum-path forest clustering (OPFC) is proposed in [29]. The OPFC is a k-NN graph in which nodes are weighted using a probability density function. The authors used different optimization techniques including Bat algorithm, Gravitational search, Harmony search and Particle swarm optimization to determine the best value of k. The approach has been evaluated on a flow-based dataset and results show that optimum-path forest clustering outperforms kmeans and SOM in flow-based detection.

A ward clustering approach to detect the dictionary attacks over SSH is presented in [30]. SSH is a very common way to access the remote servers over Internet and remain a favorite attack target. The authors used two innovations of employing of checking the existence of connection protocols, measure men of auth-packet and the next and identification of transit point of each sub-protocol. The best results include 99.90% detection rate for unsuccessful SSH attack attempts and 92.80% detection of successful SSH attack attempts.

Although there is extensive work in flow-based intrusion detection, Our approach significantly differs from the existing work. We have used a multi-stage approach that swiftly discards normal flows in the first stage. The second stage only process malicious flows and no resources are wasted on unnecessary inspection of normal flows. The first stage uses one-class classification with malicious flow category as positive class. All normal flows are considered outliers. Learning on malicious flows is fast and efficient because the malicious traffic is only in a fraction of normal traffic. The second stage categorizes the IP flows in the different alert cluster based on the flow characteristics. This provides deep insight into the malicious traffic and under attack services. Both classification stages use unsupervised learning, therefore, no labeled training set is required. We have evaluated the proposed framework on a realistic flow-based dataset, therefore, experimental results are very close to real-world scenarios.

Proposed Approach

NGN encapsulate a variety of network architectures, services, and protocols in a layered architecture. The IPFIX/Netflow flow records provide a unified way to access traffic flow information from the next-generation network. These flow records are collected from the network using specialized flow-enabled network devices. The flow data is accessed by a flow analysis application for congestion detection, billing and network security. Figure 2 shows the implementation of flow-based intrusion detection system in NGN framework. The flow information is collected at the provider edge and forwarded to the intrusion detection system. Provider edge is a router installed at the boundary of the network. The intrusion detection system analyzes the flow records passing through the provider edge and raise an alarm if malicious flows are detected.

We propose a two-stage intrusion detection model to detect malicious traffic in nextgeneration networks using IP flows. Figure 3 shows the architecture of our approach. The model analyzes IP flow data to detect malicious network traffic. The intrusion detection model consists of two stages. The first stage detection process employs a one-class support vector machine(SVM). The one-class classifier only identifies malicious IP flows while all other flows are discarded. The malicious flows are forwarded to the second stage which uses self-organizing map to group similar malicious flows into different attack clusters. Every attack cluster represents a specific type of network attack.

Fig 2. Flow monitoring in next-generation network architecture

First stage detection

The first stage detection separates malicious and normal flows network traffic. Since we have only one class of interest i.e. malicious, the problem is solved by using a one-class classifier [31]. The one-class classifier recognizes objects of only one class. All input objects are either belong to a target (positive) class or considered outliers [32]. One-class classification is used when training dataset for only one class (target class) is available. The training datasets for other classes are not available or difficult to obtain.

Fig 3. Architecture of two-stage flow-based intrusion detection system

The one-class classification has already been in use for intrusion detection [33]. Available once class classification includes density estimation, reconstruction methods and support vector machines (SVM). We use SVM-based one-class classification techniques because SVM techniques give accurate results for intrusion detection [34,35]. One-class SVM constructs a boundary around the target class objects in the form of a hyperplane. The hyperplane is constructed in the feature space such that distance from the origin is maximum [36].

Mathematically, we assume that x_i is a training example from dataset $X = \{x_1,...,x_m\}$ in the input space. Let φ is a mapping function which maps the input feature space X to a high dimensional feature space H. The dot product in H can be computed using following simple kernel function:-

$$K(x,y) = (\varphi(x).\varphi(y))_H \tag{1}$$

To separate the input examples from the origin with maximum margin using a hyperplane, following quadratic condition is applied

$$min_{w,\xi,\rho} \frac{1}{2} \|w\|^2 + \frac{1}{m\nu} \sum_{i=1}^m \xi_i - \rho$$
(2)

Subject to

$$(w.\varphi(x_i)) \ge \rho - \xi_i \xi_i \ge 0 \tag{3}$$

The ξ_i is a slack variable used to penalize the outliers. The ρ is the offset and w is weight vector. The $v \in (0,1)$ is a user-defined error control parameter and sets an upper bound on the fraction of outliers and a lower bound on the number of support vectors. A function f(x) is defined which takes the value +1, if x falls within the hyperplane and -1 otherwise. Solving the above the minimization problem, the decision function for classification is defined:

$$f(x) = sgn((w.\varphi(x)) - \rho)$$
(4)

The one-class SVM is a supervised learning algorithm and requires labeled training set for target class examples. To use one-class SVM with unsupervised learning, we employ an enhancement proposed by [37]. The enhancement considers the normal IP flows in the training dataset as outliers and removes them before training. The enhanced SVM introduce a variable η which represents an estimate that an instance in the unlabeled training set belongs to the target class (malicious IP flows) or is an outlier (normal IP flows). The η has value near to 0 for all outliers and eliminates the effect of outliers in the SVM training. Another variable β controls the maximum number of points that are allowed to be outliers. Using enhancement proposed in [37], the Equation (2) can be written as:

$$\min_{w,\rho} \min_{\eta_i} \frac{1}{2} \|w\|^2 + \frac{1}{m\nu} \sum_{i=1}^m \eta_i \max_i (0, \rho - w\phi(x_i)) - \rho$$
subject to $e^T \eta \ge m\beta$
(5)

The minimization problem shown in Equation 5 is a non-convex problem which means that is very difficult to find a global minimum point. The problem is solved using the concave convex procedure [37]:

Let g(h(w)), where $h(w) = max(0, \rho - w\varphi(x))$ and $g(u) = inf_{\beta \in 0,1}[\beta^T \mu]$, using concave duality, the objective function is reformulated as follows:

min

$$h_{w,\rho,\eta}E_{vex} + E_{cave}$$
$$E_{vex} = \frac{||w||}{2} + \eta h(w), E_{cave} = g^*\eta$$
(6)

where g^* is the concave dual of g. E_{vex} and E_{cave} are concave and convex differentiable functions.

The enhanced one-class SVM requires that malicious flows in unlabeled training dataset should be in sufficiently large quantity than normal flows. To ensure that majority of flows in the unlabeled training dataset are malicious, we propose the use of honeypot-based flow collection architecture to generate the unlabeled dataset for the

Fig 5. Training of One-class SVM using malicious flow

training of one-class SVM [38]. Figure 4 shows the malicious flow collection process using honeypot. The honeypot is directly connected with the external routing interface. The flow records collected through honeypot are mostly malicious [39] and may also contain some non-malicious traffic. The unlabeled IP flows are forwarded to the one-class SVM classifier. These malicious flows are used for training of of enhanced one-class SVM as shown in Figure 5. The one-class SVM employs an outlier detection step which removes any non-malicious flows from the dataset. Only malicious flows are utilized to build a malicious flow classification profile.

After training, the one-class SVM is used to process the IP flows being extracted from the network. The one-class SVM separates malicious flows from the network traffic. The malicious flows are forwarded to the second stage detection process while normal flows are discarded.

Second stage detection

The first stage detection process only separates malicious IP flows from the network. It does not associate an attack class with malicious flows. These malicious flows require a manual inspection to determine the attack type and corrective actions. Although malicious flows are in a small fraction as compared to normal network traffic, these flows can still be in large numbers in NGN environment. Manual inspection of such large number of flow is a difficult task. To group similar malicious IP flows together, we employ

a second stage detection process. The second stage detection process automatically place malicious IP flows into different attack clusters.

We use self-organizing map (SOM) for clustering of malicious IP flows into different attack clusters. SOM is a neural network consisting of an input and output neuron layers. The neurons in the input layer inter-connects with neurons in output layer through unsupervised competitive learning network [40]. The competitive learning is a winner-take-all approach and consists of two steps; competition and cooperation. In competition phase, a neuron in output layer is selected among all competing neurons using minimum Euclidean distance. The neuron whose weight vector comes closest to the input vector is declared winner.

Mathematically, for each input $v \in V$, *i** neuron is declared "winner" if:

$$i^* = argmin_i ||w_i - v|| \tag{7}$$

In cooperation, the weights of the winner and its neighboring neurons are adjusted using a time decay function. The effect of weight adjustment is high at the origin and decreases with the distance and time. The range of the neighborhood is defined by a Gaussian function:

$$\sigma(t) = \sigma_0 e^{\left(-2\sigma_0 \frac{t}{t_m}\right)} \tag{8}$$

where

 σ_0 = Initial value of neighborhood range *t* and t_m = The

current and maximum iteration respectively $\sigma(t)$ = The range of neighborhood at *t* stage.

After a winning neuron is selected, the weights of neighboring neuron vectors are adjusted:

$$w_i(t+1) = w_i(t) + \eta(t)\sigma(t)(v - w_i(t))$$
(9)

In above equation, *t* represents the current stage and $\eta(t)$ is the learning rate. The continuous process of competition and cooperating marks the cluster on topographic self-organizing map. Each neuron on the output layer denotes the resultant clusters. The number of output clusters has to be set before the clustering by a user defined parameter *k*.

The SOM requires a training set of malicious IP flows to create profiles for different attack clusters. We define the number of attack cluster and corresponding labels using the domain knowledge of the network environment. We manually give an attack label to all clusters in the SOM by analyzing the IP flows in the cluster. During clustering process, all incoming flows are compared with all clusters and the label of the closest cluster is given to the malicious IP flow.

The datasets

The proposed model has been evaluated on three flow-based datasets. The first dataset was developed in University of Twente and is publicly available [22]. We have created the second dataset ourselves by combining IP flows of various malware and Advance Persistent Threats (APTs) with normal flow traffic. The third dataset is a consist of SIP traffic. The IP flow records in all datasets are in Netflow v5 format. Netflow v5 is a widely used flow export and collection protocol and supported by all major hardware manufacturers [41]. We have used 9-tuple flow records in the experiment. The detail of attributes in the 9-tuple flow records is given in Table 1.

Attribute Description		Description
	Source IP	The IP Address of the source.
	Destination IP	The destination IP address
	Packets	Number of packets in flow
	Octets	Number of bytes in flow
	Duration	The duration of flow in milliseconds
	Source Port	Source port number
	Destination Port	Destination port number
	TCP Flags	Cumulative OR of TCP flags
	Protocol	The transport layer protocol such 6=TCP, 17=UDP

Table 1. Detail of attributes for Netflow v5 IP flow records

Table 2. Detail of IP flows in Sperotto's dataset

1		
Alert Type	No. of IP Flows	Category
SSH	13942629	Malicious
FTP	13	Malicious
НТТР	9798	Malicious
AUTH-IDENT	191339	Side effect
IRC	7383	Side effect
OTHERS	18970	Side effect

Sperotto's dataset

The Sperotto's dataset consists of 14.2M IP flow records collected through a "Honeypot" deployment in University of Twente network [22]. The honeypot was directly connected to internet to ensure maximum exposure to attacks. Three common services SSH, HTTP and FTP were run over the honeypot. Information about the flows is extracted from the log files of receptive service. Part of the traffic in dataset is the side effect of alerts and is not considered malicious. During the flow collection, one hacker installed an IRC proxy over the honeypot. The traffic generated due to IRC is also non-malicious. The alert types and number of flows corresponding to each alert type are shown in Table 2.

The four time related attributes *start-time start-msec, end-time and end-msec* in the original dataset are computed to a single attribute of duration in milliseconds [21]. Also the dataset itself do not contain any normal traffic, we have included a large number of normal flows in the dataset. The normal flows have been collected by ourselves from a medium-size network of legitimate users. The behavior of users during the normal flow collection period include browsing web, streaming videos, online games and remote server access.

The Sperotto's dataset is very large, therefore we have extracted a subset of IP flows from the dataset. Table 3 gives detail of IP flows in the training and test dataset. The training dataset contains 10,000 malicious flows and 500 normal flows. The testing dataset consists of 11740 malicious and 124240 normal IP flows.

	1		
Training d	Training dataset		dataset
Malicious	Normal	Malicious	Normal
10000	500	11740	124240

Table 4. Detail of IP flow records in Malware and APT dataset

						-
		Training dataset		Testing	dataset	
		Malicious	Normal	Malicious	Normal	
		3524	350	5286	124367	
Table 5. Detail of IP flows - SIP dataset						
	Traffic Type			No. of IP Flov	vs Cate	gory
	Invite	Flood SIP tr	affic	6496	Mal	icious
	Splitter SIP traffic Normal SIP traffic			3927	Mal	icious
				7901	Nor	mal
		-				

APT and Malware dataset

The Sperotto's dataset has a limited variety of malicious traffic. Most of the malicious traffic only consists of SSH attacks flows. To evaluate the performance of proposed IDS against modern attacks, we experimented with latest malware and advance persistent threats (APTs). We have generated IP flow records for different malware and APTs using packet capture files obtained from Contagio Malware Dump¹. We have used Sality, Asprox, TBot and Nuclear malware traffic. The IP flow records of these malware and APTs are combined with normal flow traffic used earlier with Sperotto's dataset. Table 4 shows the detail of IP flow records in training and test dataset . The training dataset contains 3524 malicious and 350 normal flow records while test dataset has 5286 and 124387 flow records.

SIP dataset

The third dataset is a labeled VoIP dataset consisting of SIP packet traces [42]. The dataset has two sets of SIP traces collected from two different VoIP testbed networks. The first testbed uses Asterisk PBX server and the second testbed uses the OpenSIP proxy with RADIUS servers. We have only considered the OpenSIPs traces for evaluation in our experiment. The testbed configuration includes OpenSIP proxy and-and normal and malicious traffic generators. The normal traffic is emulated by groups of VoIP bots. Each group of bots connects with the internal and external interface of the SIP proxy respectively. The malicious traffic is generated using the Inviteflood and Splitter attack tools. The dataset is available in the form of SIP packet traces. We have used ntops' nProbes tool to extract Netflow v5 based flow records from the SIP packet traces. The detail of IP flow records in the dataset is given in Table 5.

Results and Discussion

Experimental Setup

We have designed our experimental setup using R and Waikato Environment for

Table 6. Test and training dataset - SIP dataset

¹ http://contagiodump.blogspot.com/

Knowledge Analysis (WEKA). In first step, we have apply the used the R tool remove

Training dataset		Testing dataset		
Malicious	Normal	Malicious	Normal	
2083	300	10423	7901	

Table 7. Confusion Matrix for outlier detection during one-class SVM training Sperotto's dataset

	Classifi	ed as	Malicious	Normal (O	Outliers)
	Maliciou	ıs	9161	839	
	Normal (Outliers)		8	492	
Table 8. First	8. First stage detection result		s - Sperotto's d	lataset	
	Recall	Precision	False posi	tive rate	F1-score

0.1040

0.9001

0.9991

the outlier from one-class SVM training set. The majority of IP flows in the unlabeled dataset are malicious with some normal flows. The enhanced one-class SVM marks the normal flows in the training dataset as outliers and does not use them during learning. The self-organizing map(SOM) in the second stage detection process also uses malicious flows to create different attack clusters. We manually set the number of attack cluster in SOM to six using domain knowledge of the evaluation environment. Each alert cluster relates to specific attack types or a service that is under attack.

Evaluation measures

Bhuyan et al. [43] have suggested a number of measures for evaluation of intrusion detection systems. We use following evaluation measures:precision, recall and F1-score are used to obtain experimental results. Precision and recall measures are calculated as follows:

F1-score is defined as the harmonic mean of precision and recall values:

$$F1 - score = \frac{2 \times precision \times recall}{precision + recall}$$
(12)

0.9470

Sperotto's dataset results

In the first experiment, we evaluate the proposed IDS on Sperotto's dataset. Both detection stages of the IDS use the dataset shown in Table 3 for learning. Table 7 shows the confusion matrix for outlier detection process in one-class SVM training. The one-class SVM successfully removes 98.40% normal flows from the training dataset. The remaining 9161 IP flows out of 10000 are used by the one-class SVM for learning the malicious behavior. The six attack clusters include the incoming and outgoing flow traffic for SSH and HTTP services and two additional clusters for placement of unknown alerts and miss-classified IP flows.

We process the test dataset shown in Table 3 after learning the malicious IP flow behavior. In the first stage detection process, the one-class SVM marks 11730 IP flows as malicious out of 11740 total IP flows. The IP flows marked malicious also contain 1301 normal flows as false positives. Table 8 shows the precision, recall, false positive rate and F1-score for one-class SVM detection process. The results show that one-class SVM gives very good performance in detection of malicious IP flows and achieves an F1-score of 0.9470.

Table 9. Clustering malicious IP flows in second stage process - Sperotto's dataset

Fig 6. SOM Clustering results comparison - Sperotto's dataset

The IP flows identified as malicious by one-class SVM in first stage are forwarded to second stage. The second stage detection process categorizes the IP flows in different attack clusters. The total number of IP flows marked malicious by first stage are 13031 including 1301 false positives. The SOM process all malicious flows and places them in the closest attack cluster. The clustering results and the actual number of flows in every cluster are given in Table 9.

The HTTP IN, HTTP OUT and SSH IN categories remain consistent and similar number of IP flows are available in the output clusters. The actual number of flows in HTTP IN category are 2127 while the output cluster contains 2154 flows. Therefore only 27 IP flows are placed incorrectly. The HTTP OUT cluster has 2113 flows in input dataset and its output cluster contains 2085 with 28 IP flows placed in incorrect cluster. The SSH IN cluster has 4140 flows in the input set while output cluster contains 3992 flows. In this case, 148 IP flows have been incorrectly classified. The actual number flows for SSH OUT category is 3360 while the output cluster has 4006 IP flows. The SSH OUT category has highest number of incorrectly classified flows i.e. 646. Also 770 and 24 IP flows are placed in Other-I and II clusters respectively. This relatively high rate of miss classification is due to the 1301 false positives (normal IP flows) of first stage detection process. The comparison of clusters with actual flows in the input set is given in Figure 6. **Table 10.** Confusion Matrix for Outlier detection during one-class SVM training -Malware and APT dataset

Classified as	Malicious	Normal (Outliers)
Malicious	2857	330
Normal (Outliers)	20	667
	1. 1. 1	

Table 11. First stage detection results - Malware and APT dataset

Recall	Precision	False Positive rate	F1-Measure
0.9876	0.9170	0.017	0.9507

Malware and APT Dataset results

In the second experiment, we have used malware and APT flow-based dataset for evaluation. The two-stage intrusion detection model is trained using the dataset shown in Table 4. The enhanced one-class SVM removes the normal flows from the training dataset leaving only the malicious flows. Table 10 shows the confusion matrix for outlier detection process in one-class SVM training. The one-class SVM successfully removes 94.28% normal flows from the training dataset. The remaining 2857 IP flows are used by the one-class SVM and SOM for learning the malicious behavior and creation of attack clusters.

The trained one-class SVM is presented with a test dataset of 129654 IP flows. It classifies 5226 IP flows as malicious out of total 5286 IP flows. The detected malicious flows also include 434 normal flows as false positives. Table 11 shows the precision, recall, false positive rate and F1-score values. The one-class SVM achieves an F1-measure of 0.9507 and successfully detects malicious IP flows. The results again show that one-class SVM is suitable for detection of malicious flows.

The malicious flows detected in first stage are forwarded to SOM clustering algorithm in second stage detection process. The number of malicious flows is 5226 including 434 false positives. We manually set the number of attack cluster in SOM to six which include four clusters for malware and APTs and two additional clusters to place the un-clustered IP flows. The SOM places the malicious IP flows into closet matching attack clusters. The clustering results and the actual number of flows in every cluster are given in Table 12.

1312 out of 1669 flows of Sality malware are placed in correct cluster. The Asprox attack cluster has 3649 flows while the actual number of flows are 3336. Some IP flows of Sality malware are placed into Asprox cluster because Asprox malware traffic is not uniform. The false positives of first stage detection process are separated into Other-I and Other-II clusters. Figure 7 compares the result of clustering with actual IP flows.

8		
Alert Cluster	Actual IP Flows	IP flows in attack cluster
Sality outgoing	1669	1312
Asprox outgoing	3336	3649
TBot outgoing	133	200
Nuclear outgoing	88	64
Other-I	0	2

Table 12. SOM clustering results - Malware and APT dataset

Fig 7. Malware and APT clustering results comparison

Table 13. Confusion Matrix for Outlier detection during one-class SVM training - SIP dataset

Classified as	Malicious	Normal (Outliers)
Malicious	1701	91
Normal (Outliers)	30	170
-		

SIP dataset results

In the third experiment, we have used the SIP dataset, given in Table 6, for evaluation of IDS. In first stage detection, the enhanced one-class SVM uses the unlabeled training dataset for learning. The one-class SVM narks the normal flows as outliers and does not use them from learning. Table 13 shows the confusion matrix for outlier detection process. The one-class SVM successfully removes 94.05% normal flows from the training dataset. The remaining IP flows are used by the one-class SVM for learning the malicious behavior.

After training, the one-class SVM process the test dataset. The one-class SVM correctly marks 10339 IP flows as malicious out of 10456 total malicious IP flows. There is no normal flow marked as malicious thus the false positive rate is zero. Table 14 shows the precision, recall, false positive rate and F1-score values for the first stage detection. Figure 8 compares the results of clustered flows with actual flows.

The malicious flows identified in first stage detection are forwarded to the second stage. The second stage uses SOM for clustering of malicious flows according to attack type. We have used the same training dataset used in first stage for training of SOM. Since there are two types of malicious flows in the dataset, we have set the number of clusters to four. The two additional cluster are used to contain the flows which SOM fails to associate with any attack type. The results of clustering process are given in Table 15. The first cluster consist of malicious flows belonging to SIP flood. The SOM

Table 14. First stage detection results - SIP dataset

Fig 8. SOM Clustering results comparison - SIP dataset

is able to cluster 4848 flows out of total 6224 flows. The actual number of in second attack cluster are 4815. However the resulting cluster consist of 4834 flows which also includes some flows belonging to first attack cluster. The number of un-clustered flows are 657 which are placed in Other-I and Other-II cluster.

Comparison with other Intrusion Detection Systems

We have compared the performance of our IDS with other two-stage flow-based approaches proposed in [28] and [23]. The comparison of results using F1-measure and false positive rate is given in Table 16. The comparison shows that our technique outperforms the other techniques in first stage detection. In second stage detection, our technique gives better results than [23]. However, the technique proposed in [28]has higher detection rate than our technique due to the use of supervised learning.

Table 16.	Comparison	of results wi	ith other approaches
-----------	------------	---------------	----------------------

Detection stage	Performance	[28] (DARPA dataset)	[23] (KDD99 dataset)	Our approach	
	measure			Sperotto dataset	APT and malware dataset

First stage detection	Detection rate	0.9420	0.90	0.99	0.9876
	False positive rate	0.034	0.035	0.1040	0.017
Second stage detection	Detection rate	0.9942	0.90	0.95	0.93
	False positive rate	0.32	N/A	N/A	N/A

Discussion

Our proposed IDS uses IP flows for intrusion detection in next-generation networks. IP flows consist of a fraction of complete network traffic. Use of IP flow reduces the amount of data processed by the intrusion detection system. Therefore, our flow-based IDS is efficient as compared to traditional packet-based intrusion detection systems. Another advantage of flow-based inspection is independence of detection process from underlying protocols and network architecture

We have designed a two-stage intrusion detection framework. The first stage uses a computational fast detection process and only recognizes malicious flows. In the first stage, the normal flows are discarded while malicious flows are forwarded to the second stage. Since malicious flows are in small quantity as compared to normal flows, the second stage can use a computationally expensive technique for detail intrusion detection. The detail intrusion detection process gives deep insights into the malicious traffic and associates an attack type with the malicious flows. The application of computationally expensive intrusion detection techniques is difficult in traditional single-stage detection systems due to the processing of both normal and malicious flows. Therefore two-stage detection is efficient as compared to single-stage detection.

The techniques used in both detection stages are based on unsupervised learning. Therefore, no labeled datasets are required for training of detection algorithms.

Our two-stage detection uses an enhanced one-class SVM in the first stage. One-class SVM techniques give better results for intrusion detection in malicious IP flow records. However, the accuracy of one-class SVM is very sensitive to the value of v parameter [35]. The v is an upper bound on the fraction of outliers (normal IP flows) and lower bound on the number of support vectors. We have experimented with different values of v to obtain best possible results. The optimization of v parameter is also a promising research area, and different techniques have been proposed to find out the optimal value of v [44]. A limitation of enhanced one-class SVM is the requirement that malicious flows in the training set are in sufficiently higher than normal flows. In second stage detection, we have used Self-organizing maps(SOM) for automatic clustering of malicious IP flows. The results show that SOM correctly places the majority of IP flows in the correct cluster. However, domain knowledge of the traffic is required to determine the number and label of attack clusters. Our system uses unsupervised learning techniques, and no labeled datasets are required for training

We have evaluated the proposed IDS on three flow-based datasets. We also used multiple evaluation measures for comparison of results. The overall results demonstrate that our proposed technique is accurate in the separation of malicious flows and grouping of malicious IP flows in different attack clusters.

Conclusion

In this paper, we have proposed a two-stage flow-based intrusion detection model for next-generation networks. Next-generation networks provide voice, video and data services on a converged IP-based network. Our flow-based intrusion detection system is particularly useful in the context of next-generation networks (NGN) where different networks are converged to an all IP platform. Our proposed model processes the IP flow data in a two-stage detection process. The first stage uses a one-class SVM for efficient detection of malicious flows. The one-class SVM discards all normal traffics and forward the malicious traffic to second stage detection process. Due to two-stage intrusion detection process, only malicious flows are analyzed in detail. Another important feature of our system is the use unsupervised learning. The unsupervised learning does not need a labeled training datasets which are difficult to obtain for next generation networks. We have validated the approach on two flow-based datasets and results show that proposed model gives promising results. In future, the proposed intrusion detection model can be implemented using additional flow attributes. The IPFIX /Netflow v9 define around 280 flow attributes which provide in-depth information about the network traffic. These additional attributes can be used to build intrusion detection schemes for detection of novel and stealth attacks.

References

- 1. Xia C, Wang L, Sun S, Wang J. An SIR model with infection delay and propagation vector in complex networks. Nonlinear Dynamics. 2012;69(3):927–934. doi:10.1007/s11071-011-0313-y.
- 2. Chen Mh, Wang L, Wang J, Sun Sw, Xia Cy. Impact of individual response strategy on the spatial public goods game within mobile agents. Applied Mathematics and Computation. 2015;251:192–202.
- Knightson K, Morita N, Towle T. NGN architecture: generic principles, functional architecture, and implementation. IEEE Communications Magazine. 2005;43(10):49–56.
- 4. Janevski T. NGN architectures, protocols and services. John Wiley & Sons; 2014.
- 5. Sun S, Wu Y, Ma Y, Wang L, Gao Z, Xia C. Impact of Degree Heterogeneity on Attack Vulnerability of Interdependent Networks. Scientific Reports. 2016;6.
- Bhattasali T, Chaki R, Chaki N. Study of security issues in pervasive environment of next generation internet of things. In: Computer Information Systems and Industrial Management. Springer; 2013. p. 206–217.
- 7. Kolias C, Kambourakis G, Maragoudakis M. Swarm intelligence in intrusion detection: A survey. computers & security. 2011;30(8):625–642.
- Olusola AA, Oladele AS, Abosede DO. Analysis of KDD'99 Intrusion detection dataset for selection of relevance features. In: Proceedings of the World Congress on Engineering and Computer Science. vol. 1; 2010. p. 20–22.
- 9. Liao HJ, Lin CHR, Lin YC, Tung KY. Intrusion detection system: A comprehensive review. Journal of Network and Computer Applications. 2013;36(1):16–24.
- 10. PWC. Global Information Security Practices: 2015 Survey Key Findings and Trends; 2015. http://www.pwc.com.
- 11. Sommer R, Paxson V. Outside the closed world: On using machine learning for network intrusion detection. In: Security and Privacy (SP), 2010 IEEE Symposium on. IEEE; 2010. p. 305–316.

- Khyavi MH, Rahimi M. Conceptual model for security in next generation network. In: Advanced Information Networking and Applications Workshops (WAINA), 2016 30th International Conference on. IEEE; 2016. p. 591–595.
- 13. AbuHmed T, Mohaisen A, Nyang D. A survey on deep packet inspection for intrusion detection systems. arXiv preprint arXiv:08030037. 2008;.
- 14. Husak M, Velan P, Vykopal J. Security Monitoring of HTTP Traffic Using Extended Flows. In: Availability, Reliability and Security (ARES), 2015 10th International Conference on. IEEE; 2015. p. 258–265.
- 15. Koch R. Towards next-generation intrusion detection. In: Cyber Conflict (ICCC), 2011 3rd International Conference on. IEEE; 2011. p. 1–18.
- Sperotto A, Schaffrath G, Sadre R, Morariu C, Pras A, Stiller B. An overview of IP flow-based intrusion detection. Communications Surveys & Tutorials, IEEE. 2010;12(3):343–356.
- 17. Golling M, Hofstede R, Koch R. Towards multi-layered intrusion detection in highspeed networks. In: Cyber Conflict (CyCon 2014), 2014 6th International Conference On. IEEE; 2014. p. 191–206.
- Sperotto A, Pras A. Flow-based intrusion detection. In: Integrated Network Management (IM), 2011 IFIP/IEEE International Symposium on. IEEE; 2011. p. 958–963.
- 19. Claise B, Trammell B, Aitken P. Specification of the IP Flow Information Export (IPFIX) protocol for the exchange of flow information. IETF; 2013.
- Garcia-Teodoro P, Diaz-Verdejo J, Maci´a-Fern´andez G, V´azquez E. Anomaly-based network intrusion detection: Techniques, systems and challenges. computers & security. 2009;28(1):18–28.
- Winter P, Hermann E, Zeilinger M. Inductive intrusion detection in flow-based network data using one-class support vector machines. In: New Technologies, Mobility and Security (NTMS), 2011 4th IFIP International Conference on. IEEE; 2011. p. 1–5.
- 22. Sperotto A, Sadre R, Van Vliet F, Pras A. A labeled data set for flow-based intrusion detection. In: IP Operations and Management. Springer; 2009. p. 39–50.
- Casas P, Mazel J, Owezarski P. Unsupervised network intrusion detection systems: Detecting the unknown without knowledge. Computer Communications. 2012;35(7):772–783.
- 24. Tran QA, Jiang F, Hu J. A real-time netflow-based intrusion detection system with improved BBNN and high-frequency field programmable gate arrays. In: Trust, Security and Privacy in Computing and Communications (TrustCom), 2012 IEEE 11th International Conference on. IEEE; 2012. p. 201–208.
- 25. Kanda Y, Fontugne R, Fukuda K, Sugawara T. ADMIRE: Anomaly detection method using entropy-based PCA with three-step sketches. Computer Communications. 2013;36(5):575–588.

- 26. Fontugne R, Borgnat P, Abry P, Fukuda K. Mawilab: combining diverse anomaly detectors for automated anomaly labeling and performance benchmarking. In: Proceedings of the 6th International COnference. ACM; 2010. p. 8.
- 27. Jadidi Z, Muthukkumarasamy V, Sithirasenan E. Metaheuristic Algorithms Based Flow Anomaly Detector. In: Communications (APCC), 2013 19th Asia-Pacific Conference on. IEEE; 2013. p. 717–722.
- 28. Abuadlla Y, Kvascev G, Gajin S, Jovanovic Z. Flow-based anomaly intrusion detection system using two neural network stages. Computer Science and Information Systems. 2014;11(2):601–622.
- 29. Costa KA, Pereira LA, Nakamura RY, Pereira CR, Papa JP, Falc^ao AX. A natureinspired approach to speed up optimum-path forest clustering and its application to intrusion detection in computer networks. Information Sciences. 2015;294:95– 108.
- 30. Satoh A, Nakamura Y, Ikenaga T. A flow-based detection method for stealthy dictionary attacks against secure shell. Journal of Information Security and Applications. 2015;21:31–41.
- 31. Khan SS, Madden MG. One-class classification: taxonomy of study and review of techniques. The Knowledge Engineering Review. 2014;29(03):345–374.
- 32. Khan SS, Madden MG. A survey of recent trends in one class classification. In: Artificial Intelligence and Cognitive Science. Springer; 2010. p. 188–197.
- Kang I, Jeong MK, Kong D. A differentiated one-class classification method with applications to intrusion detection. Expert Systems with Applications. 2012;39(4):3899–3905.
- 34. Chebrolu S, Abraham A, Thomas JP. Feature deduction and ensemble design of intrusion detection systems. Computers & Security. 2005;24(4):295–307.
- 35. Umer MF, Sher M, Bi Y. Applying One-Class Classification Techniques to IP Flow Records for Intrusion Detection. Balitic Journal of Modern Computing. 2017;5.
- Sch¨olkopf B, Platt JC, Shawe-Taylor J, Smola AJ, Williamson RC. Estimating the support of a high-dimensional distribution. Neural computation. 2001;13(7):1443–1471.
- Amer M, Goldstein M, Abdennadher S. Enhancing one-class support vector machines for unsupervised anomaly detection. In: Proceedings of the ACM SIGKDD Workshop on Outlier Detection and Description. ACM; 2013. p. 8–15.
- Husak M, Dra^{*}sar M, et al. Flow-based monitoring of honeypots. In: 7th International Conference on Security and Protection of Information (SPI 2013); 2013.
- Mairh A, Barik D, Verma K, Jena D. Honeypot in network security: a survey. In: Proceedings of the 2011 International Conference on Communication, Computing & Security. ACM; 2011. p. 600–605.
- 40. Van Hulle MM. Self-organizing maps. In: Handbook of Natural Computing. Springer; 2012. p. 585–622.

- 41. Wijesinghe U, Tupakula U, Varadharajan V. An Enhanced Model for Network Flow Based Botnet Detection. In: Proceedings of the 38th Australasian Computer Science Conference (ACSC 2015). vol. 27; 2015. p. 30.
- 42. Nassar M, Festor O, et al. Labeled voip data-set for intrusion detection evaluation. In: Meeting of the European Network of Universities and Companies in Information and Communication Engineering. Springer; 2010. p. 97–106.
- 43. Bhuyan MH, Bhattacharyya DK, Kalita JK. Network anomaly detection: methods, systems and tools. IEEE Communications Surveys & Tutorials. 2014;16(1):303–336.
- 44. Xiao Y, Wang H, Zhang L, Xu W. Two methods of selecting Gaussian kernel parameters for one-class SVM and their application to fault detection. Knowledge-Based Systems. 2014;59:75–84.