223 research outputs found
Modeling association between DNA copy number and gene expression with constrained piecewise linear regression splines
DNA copy number and mRNA expression are widely used data types in cancer
studies, which combined provide more insight than separately. Whereas in
existing literature the form of the relationship between these two types of
markers is fixed a priori, in this paper we model their association. We employ
piecewise linear regression splines (PLRS), which combine good interpretation
with sufficient flexibility to identify any plausible type of relationship. The
specification of the model leads to estimation and model selection in a
constrained, nonstandard setting. We provide methodology for testing the effect
of DNA on mRNA and choosing the appropriate model. Furthermore, we present a
novel approach to obtain reliable confidence bands for constrained PLRS, which
incorporates model uncertainty. The procedures are applied to colorectal and
breast cancer data. Common assumptions are found to be potentially misleading
for biologically relevant genes. More flexible models may bring more insight in
the interaction between the two markers.Comment: Published in at http://dx.doi.org/10.1214/12-AOAS605 the Annals of
Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Learning to deliver LGBT+ aged care: exploring and documenting best practices in professional and vocational education through the World Café method
Substantial evidence on the adverse impact of ageing on lesbian, gay, bisexual and transgender (LGBT+) populations through the lack of inclusive care services has highlighted the need for education and training of the health and social care workforce to enhance their skills, knowledge and capabilities in this area. We describe a cross-national collaboration across four European Union countries called BEING ME. This collaboration examined the current pedagogic environment within professional, vocational and community-based education to identify what is most valuable for addressing these needs. The World Café method enabled a process of structured learning and knowledge exchange between stakeholders resulting in: (a) identification of best practices in pedagogies, (b) generation of tailored co-produced educational resources, and (c) recommendations on how to improve the knowledge and capabilities of future care professionals in the area of LGBT+ affirmative practices. Combined with themes from the post-Café evaluation, our findings suggest that underpinning professional and vocational education with a person-in-environment perspective facilitates going some way to acknowledging the historical context of older LGBT+ people's lives. Addressing the unique needs of sub-populations within LGBT+ communities and setting these in the context of holistic and person-centred care may better enable the meeting of their unique diverse needs for ageing. Recommendations are made for learning and teaching strategies to support improved LGBT+ aged care
Tensor Regression with Applications in Neuroimaging Data Analysis
Classical regression methods treat covariates as a vector and estimate a
corresponding vector of regression coefficients. Modern applications in medical
imaging generate covariates of more complex form such as multidimensional
arrays (tensors). Traditional statistical and computational methods are proving
insufficient for analysis of these high-throughput data due to their ultrahigh
dimensionality as well as complex structure. In this article, we propose a new
family of tensor regression models that efficiently exploit the special
structure of tensor covariates. Under this framework, ultrahigh dimensionality
is reduced to a manageable level, resulting in efficient estimation and
prediction. A fast and highly scalable estimation algorithm is proposed for
maximum likelihood estimation and its associated asymptotic properties are
studied. Effectiveness of the new methods is demonstrated on both synthetic and
real MRI imaging data.Comment: 27 pages, 4 figure
Electron transport through double quantum dots
Electron transport experiments on two lateral quantum dots coupled in series
are reviewed. An introduction to the charge stability diagram is given in terms
of the electrochemical potentials of both dots. Resonant tunneling experiments
show that the double dot geometry allows for an accurate determination of the
intrinsic lifetime of discrete energy states in quantum dots. The evolution of
discrete energy levels in magnetic field is studied. The resolution allows to
resolve avoided crossings in the spectrum of a quantum dot. With microwave
spectroscopy it is possible to probe the transition from ionic bonding (for
weak inter-dot tunnel coupling) to covalent bonding (for strong inter-dot
tunnel coupling) in a double dot artificial molecule. This review on the
present experimental status of double quantum dot studies is motivated by their
relevance for realizing solid state quantum bits.Comment: 32 pages, 31 figure
Reducing the global burden of cerebral venous thrombosis:An international research agenda
Background:Due to the rarity of cerebral venous thrombosis (CVT), performing high-quality scientific research in this field is challenging. Providing answers to unresolved research questions will improve prevention, diagnosis, and treatment, and ultimately translate to a better outcome of patients with CVT. We present an international research agenda, in which the most important research questions in the field of CVT are prioritized.Aims:This research agenda has three distinct goals: (1) to provide inspiration and focus to research on CVT for the coming years, (2) to reinforce international collaboration, and (3) to facilitate the acquisition of research funding.Summary of review:This international research agenda is the result of a research summit organized by the International Cerebral Venous Thrombosis Consortium in Amsterdam, the Netherlands, in June 2023. The summit brought together 45 participants from 15 countries including clinical researchers from various disciplines, patients who previously suffered from CVT, and delegates from industry and non-profit funding organizations. The research agenda is categorized into six pre-specified themes: (1) epidemiology and clinical features, (2) life after CVT, (3) neuroimaging and diagnosis, (4) pathophysiology, (5) medical treatment, and (6) endovascular treatment. For each theme, we present two to four research questions, followed by a brief substantiation per question. The research questions were prioritized by the participants of the summit through consensus discussion.Conclusions:This international research agenda provides an overview of the most burning research questions on CVT. Answering these questions will advance our understanding and management of CVT, which will ultimately lead to improved outcomes for CVT patients worldwide
Properties, production, and applications of camelid single-domain antibody fragments
Camelids produce functional antibodies devoid of light chains of which the single N-terminal domain is fully capable of antigen binding. These single-domain antibody fragments (VHHs or NanobodiesÂź) have several advantages for biotechnological applications. They are well expressed in microorganisms and have a high stability and solubility. Furthermore, they are well suited for construction of larger molecules and selection systems such as phage, yeast, or ribosome display. This minireview offers an overview of (1) their properties as compared to conventional antibodies, (2) their production in microorganisms, with a focus on yeasts, and (3) their therapeutic applications
Assessing proliferation, cell-cycle arrest and apoptotic end points in human buccal punch biopsies for use as pharmacodynamic biomarkers in drug development
Easily accessible normal tissues expressing the same molecular site(s) of drug action as malignant tissue offer an enhanced potential for early proof of anticancer drug mechanism and estimation of the biologically effective dose. Studies were undertaken in healthy male volunteers to assess the tolerability of single and multiple (four in 24âh) 3âmm punch biopsies of the buccal mucosa, and to determine the feasibility of detecting and quantifying a range of proliferation, cell-cycle arrest and apoptosis markers by immunohistochemistry (IHC) for use as potential pharmacodynamic (PD) end points. The biopsy procedure was well tolerated with 100% of volunteers stating that they would undergo single (n=10) and multiple (n=12) biopsies again. Total retinoblastoma protein (pRb), phosphorylated pRb (phospho-pRb), total p27, phosphorylated p27 (phospho-p27), phosphorylated-histone H3 (phospho-HH3), p21, p53, Cyclin A, Cyclin E, Ki67 all produced good signal detection, but M30, cleaved caspase 3 and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labelling did not. Total pRb, phospho-pRb, total p27 and phospho-p27 were quantified further in a multiple biopsy study to allow components of variability to be addressed to inform future sizing decisions on intervention studies. Neither site of biopsy within the oral cavity, nor the nominal time of biopsy had any significant impact on any of the four markers expression levels. Inter- and intrasubject coefficients of variation (CVs) that could be used to size future intervention studies for pRb, phospho-pRb, total p27 and phospho-p27 were 14, 19, 18 and 16%; and 18, 29, 25 and 19%, respectively. In conclusion, quantitation of such markers in 3âmm buccal punch biopsies would be suitable to explore as PD end points within intervention studies of drugs acting on these pathways
Susceptibility to COPD:Differential Proteomic Profiling after Acute Smoking
Cigarette smoking is the main risk factor for COPD (Chronic Obstructive Pulmonary Disease), yet only a subset of smokers develops COPD. Family members of patients with severe early-onset COPD have an increased risk to develop COPD and are therefore defined as "susceptible individuals". Here we perform unbiased analyses of proteomic profiles to assess how "susceptible individuals" differ from age-matched "non-susceptible individuals" in response to cigarette smoking. Epithelial lining fluid (ELF) was collected at baseline and 24 hours after smoking 3 cigarettes in young individuals susceptible or non-susceptible to develop COPD and older subjects with established COPD. Controls at baseline were older healthy smoking and non-smoking individuals. Five samples per group were pooled and analysed by stable isotope labelling (iTRAQ) in duplicate. Six proteins were selected and validated by ELISA or immunohistochemistry. After smoking, 23 proteins increased or decreased in young susceptible individuals, 7 in young non-susceptible individuals, and 13 in COPD in the first experiment; 23 proteins increased or decreased in young susceptible individuals, 32 in young non-susceptible individuals, and 11 in COPD in the second experiment. SerpinB3 and Uteroglobin decreased after acute smoke exposure in young non-susceptible individuals exclusively, whereas Peroxiredoxin I, S100A9, S100A8, ALDH3A1 (Aldehyde dehydrogenase 3A1) decreased both in young susceptible and non-susceptible individuals, changes being significantly different between groups for Uteroglobin with iTRAQ and for Serpin B3 with iTRAQ and ELISA measures. Peroxiredoxin I, SerpinB3 and ALDH3A1 increased in COPD patients after smoking. We conclude that smoking induces a differential protein response in ELF of susceptible and non-susceptible young individuals, which differs from patients with established COPD. This is the first study applying unbiased proteomic profiling to unravel the underlying mechanisms that induce COPD. Our data suggest that SerpinB3 and Uteroglobin could be interesting proteins in understanding the processes leading to COPD
The Role of MAPRE2 and Microtubules in Maintaining Normal Ventricular Conduction
BACKGROUND: Brugada syndrome is associated with loss-of-function SCN5A variants, yet these account for only â20% of cases. A recent genome-wide association study identified a novel locus within MAPRE2, which encodes EB2 (microtubule end-binding protein 2), implicating microtubule involvement in Brugada syndrome. METHODS: A mapre2 knockout zebrafish model was generated using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeatâassociated protein 9) and validated by Western blot. Larval hearts at 5 days post-fertilization were isolated for voltage mapping and immunocytochemistry. Adult fish hearts were used for ECG, patch clamping, and immunocytochemistry. Morpholinos were injected into embryos at 1-cell stage for knockdown experiments. A transgenic zebrafish line with cdh2 tandem fluorescent timer was used to study adherens junctions. Microtubule plus-end tracking and patch clamping were performed in human induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) with MAPRE2 knockdown and knockout, respectively. RESULTS: Voltage mapping of mapre2 knockout hearts showed a decrease in ventricular maximum upstroke velocity of the action potential and conduction velocity, suggesting loss of cardiac voltage-gated sodium channel function. ECG showed QRS prolongation in adult knockout fish, and patch clamping showed decreased sodium current density in knockout ventricular myocytes and arrhythmias in knockout iPSC-CMs. Confocal imaging showed disorganized adherens junctions and mislocalization of mature Ncad (N-cadherin) with mapre2 loss of function, associated with a decrease of detyrosinated tubulin. MAPRE2 knockdown in iPSC-CMs led to an increase in microtubule growth velocity and distance, indicating changes in microtubule dynamics. Finally, knockdown of ttl encoding tubulin tyrosine ligase in mapre2 knockout larvae rescued tubulin detyrosination and ventricular maximum upstroke velocity of the action potential. CONCLUSIONS: Genetic ablation of mapre2 led to a decrease in voltage-gated sodium channel function, a hallmark of Brugada syndrome, associated with disruption of adherens junctions, decrease of detyrosinated tubulin as a marker of microtubule stability, and changes in microtubule dynamics. Restoration of the detyrosinated tubulin fraction with ttl knockdown led to rescue of voltage-gated sodium channelârelated functional parameters in mapre2 knockout hearts. Taken together, our study implicates microtubule dynamics in the modulation of ventricular conduction
- âŠ