Electron transport experiments on two lateral quantum dots coupled in series
are reviewed. An introduction to the charge stability diagram is given in terms
of the electrochemical potentials of both dots. Resonant tunneling experiments
show that the double dot geometry allows for an accurate determination of the
intrinsic lifetime of discrete energy states in quantum dots. The evolution of
discrete energy levels in magnetic field is studied. The resolution allows to
resolve avoided crossings in the spectrum of a quantum dot. With microwave
spectroscopy it is possible to probe the transition from ionic bonding (for
weak inter-dot tunnel coupling) to covalent bonding (for strong inter-dot
tunnel coupling) in a double dot artificial molecule. This review on the
present experimental status of double quantum dot studies is motivated by their
relevance for realizing solid state quantum bits.Comment: 32 pages, 31 figure