100 research outputs found

    Molecular footprint of drug-selective pressure in a human immunodeficiency virus transmission chain

    Get PDF
    Known human immunodeficiency virus (HIV) transmission histories are invaluable models for investigating the evolutionary and transmission dynamics of the virus and to assess the accuracy of phylogenetic reconstructions. Here we have characterized an HIV-1 transmission chain consisting of nine infected patients, almost all of whom were treated with antiviral drugs at later stages of infection. Partial pol and env gp41 regions of the HIV genome were directly sequenced from plasma viral RNA for at least one sample from each patient. Phylogenetic analyses in pol using likelihood methods inferred an evolutionary history not fully compatible with the known transmission history. This could be attributed to parallel evolution of drug resistance mutations resulting in the incorrect clustering of multidrug-resistant virus. On the other hand, a fully compatible phylogenetic tree was reconstructed from the env sequences. We were able to identify and quantify the molecular footprint of drug-selective pressure in pol using maximum likelihood inference under different codon substitution models. An increased fixation rate of mutations in the HIV population of the multidrug-resistant patient was demonstrated using molecular clock modeling. We show that molecular evolutionary analyses, guided by a known transmission history, can reveal the presence of confounding factors like natural selection and caution should be taken when accurate descriptions of HIV evolution are required.status: publishe

    Rapidly Fatal Acanthamoeba Encephalitis and Treatment of Cryoglobulinemia

    Get PDF
    We describe a 66-year-old woman with therapy-refractory cryoglobulinemia treated with rituximab, plasmapheresis, and steroids; a case of fatal meningoencephalitis caused by Acanthamoeba spp. then developed. Such infections are rare and show an unusually rapid course (possibly related to rituximab)

    HIV-1 fitness landscape models for indinavir treatment pressure using observed evolution in longitudinal sequence data are predictive for treatment failure

    Get PDF
    We previously modeled the in vivo evolution of human immunodeficiency virus-1 (HIV-1) under drug selective pressure from cross-sectional viral sequences. These fitness landscapes (FLs) were made by using first a Bayesian network (BN) to map epistatic substitutions, followed by scaling the fitness landscape based on an HIV evolution simulator trying to evolve the sequences from treatment naïve patients into sequences from patients failing treatment. In this study, we compared four FLs trained with different sequence populations. Epistatic interactions were learned from three different cross-sectional BNs, trained with sequence from patients experienced with indinavir (BNT), all protease inhibitors (PIs) (BNP) or all PI except indinavir (BND). Scaling the fitness landscape was done using cross-sectional data from drug naïve and indinavir experienced patients (Fcross using BNT) and using longitudinal sequences from patients failing indinavir (FlongT using BNT, FlongP using BNP, FlongD using BND). Evaluation to predict the failing sequence and therapy outcome was performed on independent sequences of patients on indinavir. Parameters included estimated fitness (LogF), the number of generations (GF) or mutations (MF) to reach the fitness threshold (average fitness when a major resistance mutation appeared), the number of generations (GR) or mutations (MR) to reach a major resistance mutation and compared to genotypic susceptibility score (GSS) from Rega and HIVdb algorithms. In pairwise FL comparisons we found significant correlation between fitness values for individual sequences, and this correlation improved after correcting for the subtype. Furthermore, FLs could predict the failing sequence under indinavir-containing combinations. At 12 and 48 weeks, all parameters from all FLs and indinavir GSS (both for Rega and HIVdb) were predictive of therapy outcome, except MR for FlongT and FlongP. The fitness landscapes have similar predictive power for treatment response under indinavir-containing regimen as standard rules-based algorithms, and additionally allow predicting genetic evolution under indinavir selective pressure

    Trends and predictors of transmitted drug resistance (TDR) and clusters with TDR in a local Belgian HIV-1 epidemic

    Get PDF
    We aimed to study epidemic trends and predictors for transmitted drug resistance (TDR) in our region, its clinical impact and its association with transmission clusters. We included 778 patients from the AIDS Reference Center in Leuven (Belgium) diagnosed from 1998 to 2012. Resistance testing was performed using population-based sequencing and TDR was estimated using the WHO-2009 surveillance list. Phylogenetic analysis was performed using maximum likelihood and Bayesian techniques. The cohort was predominantly Belgian (58.4%), men who have sex with men (MSM) (42.8%), and chronically infected (86.5%). The overall TDR prevalence was 9.6% (95% confidence interval (CI): 7.7-11.9), 6.5% (CI: 5.0-8.5) for nucleoside reverse transcriptase inhibitors (NRTI), 2.2% (CI: 1.4-3.5) for non-NRTI (NNRTI), and 2.2% (CI: 1.4-3.5) for protease inhibitors. A significant parabolic trend of NNRTI-TDR was found (p = 0.019). Factors significantly associated with TDR in univariate analysis were male gender, Belgian origin, MSM, recent infection, transmission clusters and subtype B, while multivariate and Bayesian network analysis singled out subtype B as the most predictive factor of TDR. Subtype B was related with transmission clusters with TDR that included 42.6% of the TDR patients. Thanks to resistance testing, 83% of the patients with TDR who started therapy had undetectable viral load whereas half of the patients would likely have received a suboptimal therapy without this test. In conclusion, TDR remained stable and a NNRTI up-and-down trend was observed. While the presence of clusters with TDR is worrying, we could not identify an independent, non-sequence based predictor for TDR or transmission clusters with TDR that could help with guidelines or public health measures

    Increase in transmitted resistance to non-nucleoside reverse transcriptase inhibitors among newly diagnosed HIV-1 infections in Europe

    Get PDF
    Background: One out of ten newly diagnosed patients in Europe was infected with a virus carrying a drug resistant mutation. We analysed the patterns over time for transmitted drug resistance mutations (TDRM) using data from the European Spread program.Methods: Clinical, epidemiological and virological data from 4317 patients newly diagnosed with HIV-1 infection between 2002 and 2007 were analysed. Patients were enrolled using a pre-defined sampling strategy.Results: The overall prevalence of TDRM in this period was 8.9% (95% CI: 8.1-9.8). Interestingly, significant changes over time in TDRM caused by the different drug classes were found. Whereas nucleoside resistance mutations remained constant at 5%, a significant decline in protease inhibitors resistance mutations was observed, from 3.9% in 2002 to 1.6% in 2007 (p = 0.001). In contrast, resistance to non-nucleoside reverse transcriptase inhibitors (NNRTIs) doubled from 2.0% in 2002 to 4.1% in 2007 (p = 0.004) with 58% of viral strains carrying a K103N mutation. Phylogenetic analysis showed that these temporal changes could not be explained by large clusters of TDRM.Conclusion: During the years 2002 to 2007 transmitted resistance to NNRTI has doubled to 4% in Europe. The frequent use of NNRTI in first-line regimens and the clinical impact of NNRTI mutations warrants continued monitoring

    Patient and Regimen Characteristics Associated with Self-Reported Nonadherence to Antiretroviral Therapy

    Get PDF
    BACKGROUND: Nonadherence to antiretroviral therapy (ARVT) is an important behavioral determinant of the success of ARVT. Nonadherence may lead to virological failure, and increases the risk of development of drug resistance. Understanding the prevalence of nonadherence and associated factors is important to inform secondary HIV prevention efforts. METHODOLOGY/PRINCIPAL FINDINGS: We used data from a cross-sectional interview study of persons with HIV conducted in 18 U.S. states from 2000-2004. We calculated the proportion of nonadherent respondents (took <95% of prescribed doses in the past 48 hours), and the proportion of doses missed. We used multivariate logistic regression to describe factors associated with nonadherence. Nine hundred and fifty-eight (16%) of 5,887 respondents reported nonadherence. Nonadherence was significantly (p<0.05) associated with black race and Hispanic ethnicity; age <40 years; alcohol or crack use in the prior 12 months; being prescribed >or=4 medications; living in a shelter or on the street; and feeling "blue" >or=14 of the past 30 days. We found weaker associations with having both male-male sex and injection drug use risks for HIV acquisition; being prescribed ARVT for >or=21 months; and being prescribed a protease inhibitor (PI)-based regimen not boosted with ritonavir. The median proportion of doses missed was 50%. The most common reasons for missing doses were forgetting and side effects. CONCLUSIONS/SIGNIFICANCE: Self-reported recent nonadherence was high in our study. Our data support increased emphasis on adherence in clinical settings, and additional research on how providers and patients can overcome barriers to adherence

    Week 48 resistance analyses of the once-daily, single-tablet regimen darunavir/cobicistat/emtricitabine/tenofovir alafenamide (D/C/F/TAF) in adults living with HIV-1 from the Phase III Randomized AMBER and EMERALD Trials

    Get PDF
    Darunavir/cobicistat/emtricitabine/tenofovir alafenamide (D/C/F/TAF) 800/150/200/10 mg is being investigated in two Phase III trials, AMBER (NCT02431247; treatment-naive adults) and EMERALD (NCT02269917; treatment-experienced, virologically suppressed adults). Week 48 AMBER and EMERALD resistance analyses are presented. Postbaseline samples for genotyping/phenotyping were analyzed from protocol-defined virologic failures (PDVFs) with viral load (VL) >= 400 copies/mL at failure/later time points. Post hoc analyses were deep sequencing in AMBER, and HIV-1 proviral DNA from baseline samples (VL = 3 thymidine analog-associated mutations (24% not fully susceptible to tenofovir) detected at screening. All achieved VL <50 copies/mL at week 48 or prior discontinuation. D/C/F/TAF has a high genetic barrier to resistance; no darunavir, primary PI, or tenofovir RAMs were observed through 48 weeks in AMBER and EMERALD. Only one postbaseline M184I/V RAM was observed in HIV-1 of an AMBER participant. In EMERALD, baseline archived RAMs to darunavir, emtricitabine, and tenofovir in participants with prior VF did not preclude virologic response

    Week 96 efficacy and safety results of the phase 3, randomized EMERALD trial to evaluate switching from boosted-protease inhibitors plus emtricitabine/tenofovir disoproxil fumarate regimens to the once daily, single-tablet regimen of darunavir/cobicistat/emtricitabine/tenofovir alafenamide (D/C/F/TAF) in treatment-experienced, virologically-suppressed adults living with HIV-1

    Get PDF
    Altres ajuts: This study was sponsored by Janssen.Darunavir/cobicistat/emtricitabine/tenofovir alafenamide (D/C/F/TAF) 800/150/200/10 mg was investigated through 96 weeks in EMERALD (NCT02269917). Virologically-suppressed, HIV-1-positive treatment-experienced adults (previous non-darunavir virologic failure [VF] allowed) were randomized (2:1) to D/C/F/TAF or boosted protease inhibitor (PI) plus emtricitabine/tenofovir-disoproxil-fumarate (F/TDF) over 48 weeks. At week 52 participants in the boosted PI arm were offered switch to D/C/F/TAF (late-switch, 44 weeks D/C/F/TAF exposure). All participants were followed on D/C/F/TAF until week 96. Efficacy endpoints were percentage cumulative protocol-defined virologic rebound (PDVR; confirmed viral load [VL] ≥50 copies/mL) and VL < 50 copies/mL (virologic suppression) and ≥50 copies/mL (VF) (FDA-snapshot analysis). Of 1141 randomized patients, 1080 continued in the extension phase. Few patients had PDVR (D/C/F/TAF: 3.1%, 24/763 cumulative through week 96; late-switch: 2.3%, 8/352 week 52-96). Week 96 virologic suppression was 90.7% (692/763) (D/C/F/TAF) and 93.8% (330/352) (late-switch). VF was 1.2% and 1.7%, respectively. No darunavir, primary PI, tenofovir or emtricitabine resistance-associated mutations were observed post-baseline. No patients discontinued for efficacy-related reasons. Few discontinued due to adverse events (2% D/C/F/TAF arm). Improved renal and bone parameters were maintained in the D/C/F/TAF arm and observed in the late-switch arm, with small increases in total cholesterol/high-density-lipoprotein-cholesterol ratio. A study limitation was the lack of a control arm in the week 96 analysis. Through 96 weeks, D/C/F/TAF resulted in low PDVR rates, high virologic suppression rates, very few VFs, and no resistance development. Late-switch results were consistent with D/C/F/TAF week 48 results. EMERALD week 96 results confirm the efficacy, high genetic barrier to resistance and safety benefits of D/C/F/TAF
    corecore