141 research outputs found

    Alpha-1-Antitrypsin in Pathogenesis of Hepatocellular Carcinoma

    Get PDF
    Context: Alpha-1-antitrypsin (A1AT) is the most abundant liver-derived, highly polymorphic, glycoprotein in plasma. Hereditary deficiency of alpha-1-antitrypsin in plasma (A1ATD) is a consequence of accumulation of polymers of A1AT mutants in endoplasmic reticulum of hepatocytes and other A1AT-producing cells. One of the clinical manifestations of A1ATD is liver disease in childhood and cirrhosis and/or hepatocellular carcinoma (HCC) in adulthood. Epidemiology and pathophysiology of liver failure in early childhood caused by A1ATD are well known, but the association with hepatocellular carcinoma is not clarified. The aim of this article is to review different aspects of association between A1AT variants and hepatocellular carcinoma, with emphasis on the epidemiology and molecular pathogenesis. The significance of A1AT as a biomarker in the diagnosis of HCC is also discussed. Evidence Acquisitions: Search for relevant articles were performed through Pub Med, HighWire, and Science Direct using the keywords "alpha-1-antitrypsin", "liver diseases", "hepatocellular carcinoma", "SERPINA1". Articles published until 2011 were reviewed. Results: Epidemiology studies revealed that severe A1ATD is a significant risk factor for cirrhosis and HCC unrelated to the presence of HBV or HCV infections. However, predisposition to HCC in moderate A1ATD is rare, and probably happens in combination with HBV and/or HCV infections or other unknown risk factors. It is assumed that accumulation of polymers of A1ATD variants in endoplasmic reticulum of hepatocytes leads to damage of hepatocytes by gain-of-function mechanism. Also, increased level of A1AT was recognized as diagnostic and prognostic marker of HCC. Conclusions: Clarification of a carcinogenic role for A1ATD and identification of pro-inflammatory or some still unknown factors that lead to increased susceptibility to HCC associated with A1ATD may contribute to a better understanding of hepatic carcinogenesis and to the development of new drugs

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Effect of the relative shift between the electron density and temperature pedestal position on the pedestal stability in JET-ILW and comparison with JET-C

    Get PDF
    The electron temperature and density pedestals tend to vary in their relative radial positions, as observed in DIII-D (Beurskens et al 2011 Phys. Plasmas 18 056120) and ASDEX Upgrade (Dunne et al 2017 Plasma Phys. Control. Fusion 59 14017). This so-called relative shift has an impact on the pedestal magnetohydrodynamic (MHD) stability and hence on the pedestal height (Osborne et al 2015 Nucl. Fusion 55 063018). The present work studies the effect of the relative shift on pedestal stability of JET ITER-like wall (JET-ILW) baseline low triangularity (\u3b4) unseeded plasmas, and similar JET-C discharges. As shown in this paper, the increase of the pedestal relative shift is correlated with the reduction of the normalized pressure gradient, therefore playing a strong role in pedestal stability. Furthermore, JET-ILW tends to have a larger relative shift compared to JET carbon wall (JET-C), suggesting a possible role of the plasma facing materials in affecting the density profile location. Experimental results are then compared with stability analysis performed in terms of the peeling-ballooning model and with pedestal predictive model EUROPED (Saarelma et al 2017 Plasma Phys. Control. Fusion). Stability analysis is consistent with the experimental findings, showing an improvement of the pedestal stability, when the relative shift is reduced. This has been ascribed mainly to the increase of the edge bootstrap current, and to minor effects related to the increase of the pedestal pressure gradient and narrowing of the pedestal pressure width. Pedestal predictive model EUROPED shows a qualitative agreement with experiment, especially for low values of the relative shift

    MASTREE+: Time-series of plant reproductive effort from six continents.

    Get PDF
    Significant gaps remain in understanding the response of plant reproduction to environmental change. This is partly because measuring reproduction in long-lived plants requires direct observation over many years and such datasets have rarely been made publicly available. Here we introduce MASTREE+, a data set that collates reproductive time-series data from across the globe and makes these data freely available to the community. MASTREE+ includes 73,828 georeferenced observations of annual reproduction (e.g. seed and fruit counts) in perennial plant populations worldwide. These observations consist of 5971 population-level time-series from 974 species in 66 countries. The mean and median time-series length is 12.4 and 10 years respectively, and the data set includes 1122 series that extend over at least two decades (≥20 years of observations). For a subset of well-studied species, MASTREE+ includes extensive replication of time-series across geographical and climatic gradients. Here we describe the open-access data set, available as a.csv file, and we introduce an associated web-based app for data exploration. MASTREE+ will provide the basis for improved understanding of the response of long-lived plant reproduction to environmental change. Additionally, MASTREE+ will enable investigation of the ecology and evolution of reproductive strategies in perennial plants, and the role of plant reproduction as a driver of ecosystem dynamics
    corecore