1,310 research outputs found

    Contact transmission of influenza virus between ferrets imposes a looser bottleneck than respiratory droplet transmission allowing propagation of antiviral resistance

    Get PDF
    Influenza viruses cause annual seasonal epidemics and occasional pandemics. It is important to elucidate the stringency of bottlenecks during transmission to shed light on mechanisms that underlie the evolution and propagation of antigenic drift, host range switching or drug resistance. The virus spreads between people by different routes, including through the air in droplets and aerosols, and by direct contact. By housing ferrets under different conditions, it is possible to mimic various routes of transmission. Here, we inoculated donor animals with a mixture of two viruses whose genomes differed by one or two reverse engineered synonymous mutations, and measured the transmission of the mixture to exposed sentinel animals. Transmission through the air imposed a tight bottleneck since most recipient animals became infected by only one virus. In contrast, a direct contact transmission chain propagated a mixture of viruses suggesting the dose transferred by this route was higher. From animals with a mixed infection of viruses that were resistant and sensitive to the antiviral drug oseltamivir, resistance was propagated through contact transmission but not by air. These data imply that transmission events with a looser bottleneck can propagate minority variants and may be an important route for influenza evolution

    Energy dependence of exclusive J/ψJ/\psi photoproduction off protons in ultra-peripheral p-Pb collisions at sNN\sqrt{s_{\rm{NN}}} = 5.02 TeV

    Full text link
    The ALICE Collaboration has measured the energy dependence of exclusive photoproduction of J/ψJ/\psi vector mesons off proton targets in ultra-peripheral p-Pb collisions at a centre-of-mass energy per nucleon pair sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV. The e+^+e^- and μ+μ\mu^+\mu^- decay channels are used to measure the cross section as a function of the rapidity of the J/ψJ/\psi in the range 2.5<y<2.7-2.5 < y < 2.7, corresponding to an energy in the γ\gammap centre-of-mass in the interval 40<Wγp<55040 < W_{\gamma\mathrm{p}}<550 GeV. The measurements, which are consistent with a power law dependence of the exclusive J/ψJ/\psi photoproduction cross section, are compared to previous results from HERA and the LHC and to several theoretical models. They are found to be compatible with previous measurements.Comment: 25 pages, 3 captioned figures, 3 tables, authors from page 19, published version, figures at http://alice-publications.web.cern.ch/node/455

    Measurement of the production of charm jets tagged with D0^{0} mesons in pp collisions at s\sqrt{s}= 7 TeV

    Full text link
    The production of charm jets in proton-proton collisions at a center-of-mass energy of s=7\sqrt{s}=7 TeV was measured with the ALICE detector at the CERN Large Hadron Collider. The measurement is based on a data sample corresponding to a total integrated luminosity of 6.236.23 nb1{\rm nb}^{-1}, collected using a minimum-bias trigger. Charm jets are identified by the presence of a D0^0 meson among their constituents. The D0^0 mesons are reconstructed from their hadronic decay D0^0\rightarrowKπ+^{-}\pi^{+}. The D0^0-meson tagged jets are reconstructed using tracks of charged particles (track-based jets) with the anti-kTk_{\mathrm{T}} algorithm in the jet transverse momentum range 5<pT,jetch<305<p_{\rm{T,jet}}^{\mathrm{ch}}<30 GeV/c{\rm GeV/}c and pseudorapidity ηjet<0.5|\eta_{\rm jet}|<0.5. The fraction of charged jets containing a D0^0-meson increases with pT,jetchp_{\rm{T,jet}}^{\rm{ch}} from 0.042±0.004(stat)±0.006(syst)0.042 \pm 0.004\, \mathrm{(stat)} \pm 0.006\, \mathrm{(syst)} to 0.080±0.009(stat)±0.008(syst)0.080 \pm 0.009\, \rm{(stat)} \pm 0.008\, \rm{(syst)}. The distribution of D0^0-meson tagged jets as a function of the jet momentum fraction carried by the D0^0 meson in the direction of the jet axis (zchz_{||}^{\mathrm{ch}}) is reported for two ranges of jet transverse momenta, 5<pT,jetch<155<p_{\rm{T,jet}}^{\rm{ch}}<15 GeV/c{\rm GeV/}c and 15<pT,jetch<3015<p_{\rm{T,jet}}^{\rm{ch}}<30 GeV/c{\rm GeV/}c in the intervals 0.2<zch<1.00.2<z_{||}^{\rm{ch}}<1.0 and 0.4<zch<1.00.4<z_{||}^{\rm{ch}}<1.0, respectively. The data are compared with results from Monte Carlo event generators (PYTHIA 6, PYTHIA 8 and Herwig 7) and with a Next-to-Leading-Order perturbative Quantum Chromodynamics calculation, obtained with the POWHEG method and interfaced with PYTHIA 6 for the generation of the parton shower, fragmentation, hadronisation and underlying event.Comment: 29 pages, 8 captioned figures, 3 tables, authors from page 24, published version, figures at http://alice-publications.web.cern.ch/node/525

    Phagocytosis of Enterovirus-Infected Pancreatic β-Cells Triggers Innate Immune Responses in Human Dendritic Cells

    Get PDF
    Contains fulltext : 89763.pdf (publisher's version ) (Closed access)OBJECTIVE: Type 1 diabetes is a chronic endocrine disorder in which enteroviruses, such as coxsackie B viruses and echoviruses, are possible environmental factors that can trigger or accelerate disease. The development or acceleration of type 1 diabetes depends on the balance between autoreactive effector T-cells and regulatory T-cells. This balance is particularly influenced by dendritic cells (DCs). The goal of this study was to investigate the interaction between enterovirus-infected human pancreatic islets and human DCs. RESEARCH DESIGN AND METHODS: In vitro phagocytosis of human or porcine primary islets or Min6 mouse insuloma cells by DCs was investigated by flow cytometry and confocal analysis. Subsequent innate DC responses were monitored by quantitative PCR and Western blotting of interferon-stimulated genes (ISGs). RESULTS: In this study, we show that both mock- and coxsackievirus B3 (CVB3)-infected human and porcine pancreatic islets were efficiently phagocytosed by human monocyte-derived DCs. Phagocytosis of CVB3-infected, but not mock-infected, human and porcine islets resulted in induction of ISGs in DCs, including the retinoic acid-inducible gene (RIG)-I-like helicases (RLHs), RIG-I, and melanoma differentiation-associated gene 5 (Mda5). Studies with murine Min6 insuloma cells, which were also efficiently phagocytosed, revealed that increased ISG expression in DCs upon encountering CVB-infected cells resulted in an antiviral state that protected DCs from subsequent enterovirus infection. The observed innate antiviral responses depended on RNA within the phagocytosed cells, required endosomal acidification, and were type I interferon dependent. CONCLUSIONS: Human DCs can phagocytose enterovirus-infected pancreatic cells and subsequently induce innate antiviral responses, such as induction of RLHs. These responses may have important consequences for immune homeostasis in vivo and may play a role in the etiology of type 1 diabetes.1 mei 201

    A systematic review of contamination (aerosol, splatter and droplet generation) associated with oral surgery and its relevance to COVID-19

    Get PDF
    IntroductionThe current COVID-19 pandemic caused by the SARS-CoV-2 virus has impacted the delivery of dental care globally and has led to re-evaluation of infection control standards. However, lack of clarity around what is known and unknown regarding droplet and aerosol generation in dentistry (including oral surgery and extractions), and their relative risk to patients and the dental team, necessitates a review of evidence relating to specific dental procedures. This review is part of a wider body of research exploring the evidence on bioaerosols in dentistry and involves detailed consideration of the risk of contamination in relation to oral surgery.MethodsA comprehensive search of Medline (OVID), Embase (OVID), Cochrane Central Register of Controlled Trials, Scopus, Web of Science, LILACS and ClinicalTrials.Gov was conducted using key terms and MeSH (Medical Subject Headings) words relating to the review questions. Methodological quality including sensitivity was assessed using a schema developed to measure quality aspects of studies using a traffic light system to allow inter- and intra-study overview and comparison. A narrative synthesis was conducted for assessment of the included studies and for the synthesis of results.ResultsEleven studies on oral surgery (including extractions) were included in the review. They explored microbiological (bacterial and fungal) and blood (visible and/or imperceptible) contamination at the person level (patients, operators and assistants) and/or at a wider environmental level, using settle plates, chemiluminescence reagents or air samplers; all within 1 m of the surgical site. Studies were of generally low to medium quality and highlighted an overall risk of contaminated aerosol, droplet and splatter generation during oral surgery procedures, most notably during removal of impacted teeth using rotatory handpieces. Risk of contamination and spread was increased by factors, including proximity to the operatory site, longer duration of treatment, higher procedural complexity, non-use of an extraoral evacuator and areas involving more frequent contact during treatment.ConclusionA risk of contamination (microbiological, visible and imperceptible blood) to patients, dental team members and the clinical environment is present during oral surgery procedures, including routine extractions. However, the extent of contamination has not been explored fully in relation to time and distance. Variability across studies with regards to the analysis methods used and outcome measures makes it difficult to draw robust conclusions. Further studies with improved methodologies, including higher test sensitivity and consideration of viruses, are required to validate these findings

    Effectiveness of N95 respirator decontamination and reuse against SARS-CoV-2 virus

    Get PDF
    The coronavirus pandemic has created worldwide shortages of N95 respirators. We analyzed 4 decontamination methods for effectiveness in deactivating severe acute respiratory syndrome coronavirus 2 virus and effect on respirator function. Our results indicate that N95 respirators can be decontaminated and reused, but the integrity of respirator fit and seal must be maintained

    Elucidating variations in the nucleotide sequence of Ebola virus associated with increasing pathogenicity

    Get PDF
    Background Ebolaviruses cause a severe and often fatal haemorrhagic fever in humans, with some species such as Ebola virus having case fatality rates approaching 90%. Currently, the worst Ebola virus outbreak since the disease was discovered is occurring in West Africa. Although thought to be a zoonotic infection, a concern is that with increasing numbers of humans being infected, Ebola virus variants could be selected which are better adapted for human-to-human transmission. Results To investigate whether genetic changes in Ebola virus become established in response to adaptation in a different host, a guinea pig model of infection was used. In this experimental system, guinea pigs were infected with Ebola virus (EBOV), which initially did not cause disease. To simulate transmission to uninfected individuals, the virus was serially passaged five times in naïve animals. As the virus was passaged, virulence increased and clinical effects were observed in the guinea pig. An RNAseq and consensus mapping approach was then used to evaluate potential nucleotide changes in the Ebola virus genome at each passage. Conclusions Upon passage in the guinea pig model, EBOV become more virulent, RNA editing and also coding changes in key proteins become established. The data suggest that the initial evolutionary trajectory of EBOV in a new host can lead to a gain in virulence. Given the circumstances of the sustained transmission of EBOV in the current outbreak in West Africa, increases in virulence may be associated with prolonged and uncontrolled epidemics of EBOV

    The new coronavirus disease: What do we know so far?

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus that causes the new disease COVID-19. Symptoms range from mild to severe with a higher incidence of severe cases in patients with risk factors such as older age and comorbidities. COVID-19 is mainly spread through the inhalation of respiratory droplets from coughing or sneezing or via contact with droplet-contaminated surfaces. Paramedics should be aware that some aerosol-generating procedures may put them at a higher risk of contracting the virus via possible airborne transmission. Use of remote triage clinical assessment is likely to increase as a result of the pandemic. There is no curative drug treatment for the virus and some medications may exacerbate its effects or make patients more susceptible to it. Evidence and guidelines are evolving on SARS-CoV-2 and COVID-19. Paramedics should keep up to date with the latest clinical guidance from their employers

    Surgically generated aerosol and mitigation strategies: combined use of irrigation, respirators and suction massively reduces particulate matter aerosol

    Get PDF
    Background Aerosol is a health risk to theatre staff. This laboratory study quantifies the reduction in particulate matter aerosol concentrations produced by electrocautery and drilling when using mitigation strategies such as irrigation, respirator filtration and suction in a lab environment to prepare for future work under live OR conditions. Methods We combined one aerosol-generating procedure (monopolar cutting or coagulating diathermy or high-speed diamond- or steel-tipped drilling of cadaveric porcine tissue) with one or multiple mitigation strategies (instrument irrigation, plume suction and filtration using an FFP3 respirator filter) and using an optical particle counter to measure particulate matter aerosol size and concentrations. Results Significant aerosol concentrations were observed during all aerosol-generating procedures with concentrations exceeding 3 × 106 particles per 100 ml. Considerable reductions in concentrations were observed with mitigation. In drilling, suction, FFP3 filtration and wash alone respectively reduced aerosol by 19.3–31.6%, 65.1–70.8% and 97.2 to > 99.9%. The greatest reduction (97.38 to > 99.9%) was observed when combining irrigation and filtration. Coagulating diathermy reduced concentrations by 88.0–96.6% relative to cutting, but produced larger particles. Suction alone, and suction with filtration reduced aerosol concentration by 41.0–49.6% and 88.9–97.4% respectively. No tested mitigation strategies returned aerosol concentrations to baseline. Conclusion Aerosol concentrations are significantly reduced through the combined use of filtration, suction and irrigation. Further research is required to characterise aerosol concentrations in the live OR and to find acceptable exposure limits, and in their absence, to find methods to further reduce exposure to theatre staff
    corecore