1,267 research outputs found

    Relationships between 24-hour LH and testosterone concentrations and with other pituitary hormones in healthy older men

    Get PDF
    Objective: To investigate the relationship between LH and testosterone (T), which characteristics associate with the strength of this relationship, and their interrelationships with GH, TSH, cortisol, and ACTH.Design: Hormones were measured in serum samples collected every 10 minutes during 24 hours from 20 healthy men, comprising 10 offspring of long-lived families and 10 control subjects, with a mean (SD) age of 65.6 (5.3) years. We performed cross-correlation analyses to assess the relative strength between 2 timeseries for all possible time shifts.Results: Mean (95% CI) maximal correlation was 0.21 (0.10-0.31) at lag time of 60 minutes between LH and total T concentrations. Results were comparable for calculated free, bioavailable, or secretion rates of T. Men with strong LH-T cross-correlations had, compared with men with no cross-correlation, lower fat mass (18.5 [14.9-19.7] vs. 22.3 [18.4-29.4] kg), waist circumference (93.6 [5.7] vs. 103.1 [12.0] cm), high-sensitivity C-reactive protein (0.7 [0.4-1.3] vs. 1.8 [0.8-12.3] mg/L), IL-6 (0.8 [0.6-1.0] vs. 1.2 [0.9-3.0] pg/mL), and 24-hour mean LH (4.3 [2.0] vs. 6.1 [1.5] U/L), and stronger LH-T feedforward synchrony (1.5 [0.3] vs. 1.9 [0.2]). Furthermore,T was positively cross-correlated withTSH (0.32 [0.21-0.43]), cortisol (0.26 [0.19-0.33]), and ACTH (0.26 [0.19-0.32]).Conclusions: LH is followed by T with a delay of 60 minutes in healthy older men. Men with a strong LH-T relationship had more favorable body composition, inflammatory markers, LH levels, and LH-T feedforward synchrony. We observed positive correlations between T and TSH, cortisol, and ACTH.Pathophysiology, epidemiology and therapy of agein

    A systematic study of water models for molecular simulation:Derivation of water models optimized for use with a reaction field

    Get PDF
    We have performed long molecular dynamics simulations of water using four popular water models, namely simple point charge (SPC), extended simple point charge (SPC/E), and the three point (TIP3P) and four point (TIP4P) transferable intermolecular potentials. System sizes of 216 and 820 molecules were used to study the dependence of properties on the system size. All systems were simulated at 300 K with and without reaction fields and with two different cutoff radii, in order to study the impact of the cutoff treatment on density, energy, dynamic, and dielectric properties. Furthermore we generated two special-purpose water models based on the SPC and TIP4P models, for use with a reaction field. The atomic charges and the Lennard-Jone

    Exploring the Levinthal limit in protein folding

    Get PDF
    According to the thermodynamic hypothesis, the native state of proteins is uniquely defined by their amino acid sequence. On the other hand, according to Levinthal, the native state is just a local minimum of the free energy and a given amino acid sequence, in the same thermodynamic conditions, can assume many, very different structures that are as thermodynamically stable as the native state. This is the Levinthal limit explored in this work. Using computer simulations, we compare the interactions that stabilize the native state of four different proteins with those that stabilize three non-native states of each protein and find that the nature of the interactions is very similar for all such 16 conformers. Furthermore, an enhancement of the degree of fluctuation of the non-native conformers can be explained by an insufficient relaxation to their local free energy minimum. These results favor Levinthal's hypothesis that protein folding is a kinetic non-equilibrium process.FCT - Foundation for Science and Technology, Portugal [UID/Multi/04326/2013]; Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); Conselho Nacional de Desenvolvimento Cientia co e Tecnologico (CNPq

    Water permeation through stratum corneum lipid bilayers from atomistic simulations

    Get PDF
    Stratum corneum, the outermost layer of skin, consists of keratin filled rigid non-viable corneocyte cells surrounded by multilayers of lipids. The lipid layer is responsible for the barrier properties of the skin. We calculate the excess chemical potential and diffusivity of water as a function of depth in lipid bilayers with compositions representative of the stratum corneum using atomistic molecular dynamics simulations. The maximum in the excess free energy of water inside the lipid bilayers is found to be twice that of water in phospholipid bilayers at the same temperature. Permeability, which decreases exponentially with the free energy barrier, is reduced by several orders of magnitude as compared to with phospholipid bilayers. The average time it takes for a water molecule to cross the bilayer is calculated by solving the Smoluchowski equation in presence of the free energy barrier. For a bilayer composed of a 2:2:1 molar ratio of ceramide NS 24:0, cholesterol and free fatty acid 24:0 at 300K, we estimate the permeability P=3.7e-9 cm/s and the average crossing time \tau_{av}=0.69 ms. The permeability is about 30 times smaller than existing experimental results on mammalian skin sections.Comment: latex, 8 pages, 6 figure

    N-myristoylated proteins, key components in intracellular signal transduction systems enabling rapid and flexible cell responses

    Get PDF
    N-myristoylation, one of the co- or post-translational modifications of proteins, has so far been regarded as necessary for anchoring of proteins to membranes. Recently, we have revealed that Nα-myristoylation of several brain proteins unambiguously regulates certain protein–protein interactions that may affect signaling pathways in brain. Comparison of the amino acid sequences of myristoylated proteins including those in other organs suggests that this regulation is involved in signaling pathways not only in brain but also in other organs. Thus, it has been shown that myristoylated proteins in cells regulate the signal transduction between membranes and cytoplasmic fractions. An algorithm we have developed to identify myristoylated proteins in cells predicts the presence of hundreds of myristoylated proteins. Interestingly, a large portion of the myristoylated proteins thought to take part in signal transduction between membranes and cytoplasmic fractions are included in the predicted myristoylated proteins. If the proteins functionally regulated by myristoylation, a posttranslational protein modification, were understood as cross-talk points within the intracellular signal transduction system, known signaling pathways could thus be linked to each other, and a novel map of this intracellular network could be constructed. On the basis of our recent results, this review will highlight the multifunctional aspects of protein N-myristoylation in brain
    corecore