1,053 research outputs found

    An empirical, yet practical way to predict the band gap in solids by using density functional band structure calculations

    Get PDF
    Band structure calculations based on density functional theory (DFT) with local or gradient-corrected exchange-correlation potentials are known to severely underestimate the band gap of semiconducting and insulating materials. Alternative approaches have been proposed: from semiempirical setups, such as the so-called DFT +U, to hybrid density functionals using a fraction of nonlocal Fock exchange, to modifications of semilocal density functionals. However, the resulting methods appear to be material dependent and lack theoretical rigor. The rigorous many-body perturbation theory based on GW methods provides accurate results but at a very high computational cost. Hereby, we show that a linear correlation between the electronic band gaps obtained from standard DFT and GW approaches exists for most materials and argue that (1) this is a strong indication that the problem of predicting band gaps from standard DFT calculation arises from the assignment of a physical meaning to the Kohn-Sham energy levels rather than from intrinsic errors of the DFT methods and (2) it provides a practical way to obtain GW-like quality results from standard DFT calculations. The latter will be especially useful for systems where the unit cell involves a large number of atoms as in the case of doped or defect-containing materials for which GW calculations become unfeasible

    Electronic properties of realistic anatase TiO2 nanoparticles from G(0)W(0) calculations on a Gaussian and plane waves scheme

    Full text link
    The electronic properties of realistic (TiO2)n nanoparticles (NPs) with cuboctahedral and bipyramidal morphologies are investigated within the many-body perturbation theory (MBPT) G0W0 approximation using PBE and hybrid PBEx (12.5% Fock contribution) functionals as starting points. The use of a Gaussian and plane waves (GPW) scheme reduces the usual O4 computational time required in this type of calculation close to O3 and thus allows considering explicitly NPs with n up to 165. The analysis of the Kohn-Sham energy orbitals and quasiparticle (QP) energies shows that the optical energy gap (Ogap), the electronic energy gap (Egap), and the exciton binding energy (ΔEex) values decrease with increasing TiO2 NP size, in agreement with previous work. However, while bipyramidal NPs appear to reach the scalable regime already for n = 84, cuboctahedral NPs reach this regime only above n = 151. Relevant correlations are found and reported that will allow one to predict these electronic properties at the G0W0 level in even much larger NPs where these calculations are unaffordable. The present work provides a feasible and practical way to approach the electronic properties of rather large TiO2 NPs and thus constitutes a further step in the study of realistic nanoparticles of semiconducting oxides

    Investigating the character of excited states in TiO2 nanoparticles from topological descriptors: implications for photocatalysis

    Get PDF
    Titanium dioxide (TiO2) nanoclusters (NCs) and nanoparticles (NPs) have been the focus of intense research in recent years since they play a prominent role in photocatalysis. In particular, the properties of their excited states determine the photocatalytic activity. Among the requirements for photocatalytic activity, low excitation energy and large separation of the charge carriers are crucial. While information regarding the first is straightforward from either experiment or theory, the information regarding the second is scarce or missing. In the present work we fill this gap through a topological analysis of the first singlet excited state of a series of TiO2 NCs, and anatase and rutile derived NPs containing up to 495 atoms. The excited states of all these systems in vacuo have been obtained from time-dependent density functional theory (TDDFT) calculations using hybrid functionals and the influence of water was taken into account through a continuum model. Three different topological descriptors based on the attachment/detachment one-electron charge density, are scrutinized: (i) charge transfer degree, (ii) charge density overlap, and (iii) distance between centroids of charge. The present analysis shows that the charge separation in the excited state strongly depends on the NP size and shape. The character of the electronic excitations, as arising from the analysis of the canonical Kohn-Sham molecular orbitals (MOs) or from natural transition orbitals (NTOs), is also investigated. The understanding and prediction of charge transfer and recombination in TiO2 nanostructures may have implications in the rational design of these systems to boost their photocatalytic potential

    Morphology of TiO2 nanoparticles as fingerprint for the transient absorption spectra: implications for photocatalysis

    Get PDF
    Understanding the relationship between structural properties and the character of the charged carriers in photoactive TiO2 nanoparticles is fundamental to improving their photocatalytic activity. Transient absorption spectroscopy (TAS) is often used to explore the character of the charge carriers, but carrying out experiments on well-defined nanoparticles with a given morphology and selected size is extremely difficult. Here, hybrid time-dependent density functional theory based calculations carried out for realistic TiO2 nanoparticles (NPs) with bipyramidal, truncated, and spherical morphologies reveal that the electron-trapped carriers are quite sensitive to the NP morphology. In particular, these carriers are shallowly trapped in faceted NPs whereas they are deeply trapped in those exhibiting a spherical morphology. In addition, the simulated absorption spectra can be compared directly to experimental ones obtained by TAS, thus allowing additional information to be provided regarding the morphology of the TiO2 NPs in a given sample. Note that although the present study focuses on TiO2 nanoparticles, it can be easily extended to other photoactive materials such as ZnO or WO3 NPs thus allowing the extraction of information regarding the relationship between the NP morphology and the nature of the low-lying excited states

    Theoretical modeling of electronic excitations of gas-phase and solvated TiO2 nanoclusters and nanoparticles of interest in photocatalysis

    Get PDF
    The optical absorption spectra of (TiO2)n, nanoclusters (n = 1-20) and nanoparticles (n = 35, 84) have been calculated from the frequency-dependent dielectric function in the independent particle approximation under the framework of density functional theory. The PBE generalized gradient approach based functional, the so-called PBE+U method and the PBE0 and PBEx hybrid functionals containing 25% and 12.5% of nonlocal Fock exchange, respectively have been used. The simulated spectra have been obtained in the gas phase and in water on previously PBE0 optimized atomic structures. The effect of the solvent has been accounted for by using an implicit water solvation model. For the smallest nanoclusters, the spectra show discrete peaks, whereas for the largest nanoclusters and for the nanoparticles they resemble a continuum absorption band. In the gas phase and for a given density functional, the onset of the absorption (optical gap, Ogap) remains relatively constant for all nanoparticle sizes although it increases with the percentage of nonlocal Fock exchange, as expected. For all tested functionals, the tendency of Ogap in water is very similar to that observed in the gas phase with an almost constant upshift. For comparison, the optical gap has also been calculated at the TD-DFT level with the PBEx functional in the gas phase and in water. Both approaches agree reasonably well although the TD-DFT gap values are lower than those derived from the dielectric-function. Overall, the position of the spectral maxima and the width of the spectra are relatively constant and independent of particle size which may have implications in the understanding of photocatalysis by TiO2

    24-hour sodium and potassium excretion in the Americas: a systematic review and meta-analysis.

    Get PDF
    OBJECTIVE: To determine the 24-hour urinary sodium and potassium excretions in the Americas. METHODS: A systematic review and meta-analysis were performed seeking for studies conducted between 1990 and 2021 in adults living in any sovereign state of the Americas in Medline, Embase, Scopus, SciELO, and Lilacs. The search was first run on October 26th, 2020 and was updated on December 15th, 2021. Of 3 941 abstracts reviewed, 74 studies were included from 14 countries, 72 studies reporting urinary sodium (27 387 adults), and 42 studies reporting urinary potassium (19 610 adults) carried out between 1990 and 2020. Data were pooled using a random-effects meta-analysis model. RESULTS: Mean excretion was 157.29 mmol/24h (95% CI, 151.42-163.16) for sodium and 57.69 mmol/24h (95% CI, 53.35-62.03) for potassium. When only women were considered, mean excretion was 135.81 mmol/24h (95% CI, 130.37-141.25) for sodium and 51.73 mmol/24h (95% CI, 48.77-54.70) for potassium. In men, mean excretion was 169.39 mmol/24h (95% CI, 162.14-176.64) for sodium and 62.67 mmol/24h (95% CI, 55.41-69.93) for potassium. Mean sodium excretion was 150.09 mmol/24h (95% CI, 137.87-162.30) in the 1990s and 159.79 mmol/24h (95% CI, 151.63-167.95) in the 2010s. Mean potassium excretion was 58.64 mmol/24h (95% CI, 52.73-64.55) in the 1990s and 56.33 mmol/24/h (95% CI, 48.65-64.00) in the 2010s. CONCLUSIONS: These findings suggest that sodium excretions are almost double the maximum level recommended by the World Health Organization and potassium excretions are 35% lower than the minimum requirement; therefore, major efforts to reduce sodium and to increase potassium intakes should be implemented

    Sublayer- and cell-type-specific neurodegenerative transcriptional trajectories in hippocampal sclerosis

    Get PDF
    Altres ajuts: FundaciĂłn Tatiana PĂ©rez de Guzman el Bueno; SynCogDis Network (SAF2014-52624-REDT, SAF2017-90664-REDT); Human Frontiers Science Program (HFSP RGP0022/2013); Fondo Europeo de Desarrollo Regional (FEDER).Hippocampal sclerosis, the major neuropathological hallmark of temporal lobe epilepsy, is characterized by different patterns of neuronal loss. The mechanisms of cell-type-specific vulnerability and their progression and histopathological classification remain controversial. Using single-cell electrophysiology in vivo and immediate-early gene expression, we reveal that superficial CA1 pyramidal neurons are overactive in epileptic rodents. Bulk tissue and single-nucleus expression profiling disclose sublayer-specific transcriptomic signatures and robust microglial pro-inflammatory responses. Transcripts regulating neuronal processes such as voltage channels, synaptic signaling, and cell adhesion are deregulated differently by epilepsy across sublayers, whereas neurodegenerative signatures primarily involve superficial cells. Pseudotime analysis of gene expression in single nuclei and in situ validation reveal separated trajectories from health to epilepsy across cell types and identify a subset of superficial cells undergoing a later stage in neurodegeneration. Our findings indicate that sublayer- and cell-type-specific changes associated with selective CA1 neuronal damage contribute to progression of hippocampal sclerosis

    Shells and humans: molluscs and other coastal resources from the earliest human occupations at the Mesolithic shell midden of El Mazo (Asturias, Northern Spain)

    Get PDF
    Human populations exploited coastal areas with intensity during the Mesolithic in Atlantic Europe, resulting in the accumulation of large shell middens. Northern Spain is one of the most prolific regions, and especially the so-called Asturian area. Large accumulations of shellfish led some scholars to propose the existence of intensification in the exploitation of coastal resources in the region during the Mesolithic. In this paper, shell remains (molluscs, crustaceans and echinoderms) from stratigraphic units 114 and 115 (dated to the early Mesolithic c. 9 kys cal BP) at El Mazo cave (Asturias, northern Spain) were studied in order to establish resource exploitation patterns and environmental conditions. Species representation showed that limpets, top shells and sea urchins were preferentially exploited. One-millimetre mesh screens were crucial in establishing an accurate minimum number of individuals for sea urchins and to determine their importance in exploitation patterns. Environmental conditions deduced from shell assemblages indicated that temperate conditions prevailed at the time of the occupation and the morphology of the coastline was similar to today (rocky exposed shores). Information recovered relating to species representation, collection areas and shell biometry reflected some evidence of intensification (reduced shell size, collection in lower areas of exposed shores, no size selection in some units and species) in the exploitation of coastal resources through time. However, the results suggested the existence of changes in collection strategies and resource management, and periods of intense shell collection may have alternated with times of shell stock recovery throughout the Mesolithic.This research was performed as part of the project “The human response to the global climatic change in a littoral zone: the case of the transition to the Holocene in the Cantabrian coast (10,000–5000 cal BC) (HAR2010-22115-C02-01)” funded by the Spanish Ministry of Economy and Competitiveness. AGE was funded by the University of Cantabria through a predoctoral grant and IGZ was funded by the Spanish Ministry of Economy and Competitiveness through a Juan de la Cierva grant. We also would like to thank the University of Cantabria and the IIIPC for providing support, David Cuenca-Solana, Alejandro GarcĂ­a Moreno and Lucia Agudo PĂ©rez for their help. We also thank Jennifer Jones for correcting the English. Comments from two anonymous reviewers helped to improve the paper

    Measurement of the flavour composition of dijet events in pp collisions at root s=7 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the flavour composition of dijet events produced in pp collisions at √s=7 TeV using the ATLAS detector. The measurement uses the full 2010 data sample, corresponding to an integrated luminosity of 39 pb−1. Six possible combinations of light, charm and bottom jets are identified in the dijet events, where the jet flavour is defined by the presence of bottom, charm or solely light flavour hadrons in the jet. Kinematic variables, based on the properties of displaced decay vertices and optimised for jet flavour identification, are used in a multidimensional template fit to measure the fractions of these dijet flavour states as functions of the leading jet transverse momentum in the range 40 GeV to 500 GeV and jet rapidity |y|<2.1. The fit results agree with the predictions of leading- and next-to-leading-order calculations, with the exception of the dijet fraction composed of bottom and light flavour jets, which is underestimated by all models at large transverse jet momenta. The ability to identify jets containing two b-hadrons, originating from e.g. gluon splitting, is demonstrated. The difference between bottom jet production rates in leading and subleading jets is consistent with the next-to-leading-order predictions
    • 

    corecore