71 research outputs found

    Estimating Rayleigh wave particle motion from three-component array analysis of ambient vibrations

    Get PDF
    Several methods have been proposed in the past years to extract the Rayleigh wave ellipticity from horizontal-to-vertical spectral ratios of single station ambient noise recordings. The disadvantage of this set of techniques is the difficulty in clearly identifying and separating the contribution of higher modes. In most cases, only the fundamental mode of ellipticity can be identified. Moreover, it is generally difficult to correct for the energy of SH and Love waves present in the horizontal components of the ambient vibration wavefield. We introduce a new methodology to retrieve Rayleigh wave ellipticity using high-resolution frequency-wavenumber array analysis. The technique is applied to the three components of motion and is based on the assumption that an amplitude maximum in the f-k cross-spectrum must represent the true power amplitude of the corresponding signal. In the case of Rayleigh waves, therefore, the ratio between maxima obtained from the horizontal (radial-polarized) and vertical components of motion will also represent the frequency-dependent ellipticity function. Consequently, if we can identify the Rayleigh dispersion curves of several modes on the f-k plane, then the corresponding modal ellipticity patterns can also be separated and extracted. To test the approach, synthetic and real data sets were processed. In all tested cases, a reliable estimation of segments of the fundamental mode ellipticity was obtained. The identification of higher modes is possible in most cases. The quality of results depends on the selected array geometry and the signal-to-noise ratio, with a major improvement achieved by increasing the number of receivers employed during the survey. An experiment conducted in the town of Visp (Switzerland) allowed the retrieval of portions of ellipticity curves up to the second Rayleigh higher mode, using two concentric circular array configurations of 14 and 11 receivers eac

    Fundamental and higher two-dimensional resonance modes of an Alpine valley

    Get PDF
    We investigated the sequence of 2-D resonance modes of the sediment fill of RhĂŽne Valley, Southern Swiss Alps, a strongly overdeepened, glacially carved basin with a sediment fill reaching a thickness of up to 900 m. From synchronous array recordings of ambient vibrations at six locations between Martigny and Sion we were able to identify several resonance modes, in particular, previously unmeasured higher modes. Data processing was performed with frequency domain decomposition of the cross-spectral density matrices of the recordings and with time-frequency dependent polarization analysis. 2-D finite element modal analysis was performed to support the interpretation of processing results and to investigate mode shapes at depth. In addition, several models of realistic bedrock geometries and velocity structures could be used to qualitatively assess the sensitivity of mode shape and particle motion dip angle to subsurface properties. The variability of modal characteristics due to subsurface properties makes an interpretation of the modes purely from surface observations challenging. We conclude that while a wealth of information on subsurface structure is contained in the modal characteristics, a careful strategy for their interpretation is needed to retrieve this informatio

    The use of Rayleigh-wave ellipticity for site-specific hazard assessment and microzonation: application to the city of Lucerne, Switzerland

    Get PDF
    The sediments underlying the city of Lucerne (Switzerland) consisting of fluvio-lacustrine deposits of Quaternary age have the potential to produce strong amplification of the seismic wavefield. To obtain a reliable estimation of the deep soil structure, we combine different methodologies based on ambient noise recordings, such as single station horizontal to vertical ratios and three-component array analysis. Two novel techniques to estimate Rayleigh-wave ellipticity from ambient noise recordings are tested. These are based on a single- and a multistation approach, respectively. The first utilizes the continuous wavelet transform to perform a decomposition of the noise wavefield and to isolate and extract the Rayleigh-wave contribution. The second, conversely, relies on a high-resolution f-k method to achieve the same result. We compare the results from the two techniques to provide an evaluation of their capabilities and limitations. A two-step inversion scheme is then presented to improve resolution on the bedrock depth. In particular, the surface wave dispersion information is initially used to constrain the soft sediment part, while the Rayleigh-wave ellipticity peak is subsequently used for constraining the bedrock depth. It is shown that such an approach is beneficial to map the bedrock geometry over dense urban areas. The output velocity model is then used to compute the local seismic amplification by means of gridded 1-D approximatio

    Ambient vibration analysis of an unstable mountain slope

    Get PDF
    A field experiment with small aperture seismic arrays was performed on the unstable rock slope above the village of Randa in the southern Swiss Alps. The aim of this experiment was to constrain the seismic response of a potential future rockslide using ambient vibration recordings. Weak seismic events were identified on the recordings and site-to-reference spectral ratios were calculated using a reference site located on the stable part of the slope. Spectral ratios of up to 30 were observed at sites located within the unstable portion of the slope. A strong variation of spectral ratios with azimuth indicates a directional site effect. Neither amplification nor directionality were observed at sites located in the stable part of the slope. Furthermore, time-frequency polarization analysis of the ambient noise was performed to provide robust estimates of frequency dependent directions of the maximum polarization. It was found that the unstable part of the slope vibrates within a narrow range of directions (130 ± 10°) for the frequency range centred around 5 Hz. The polarization directions estimated from ambient seismic vibrations are in good agreement with the deformation directions obtained by geodetic and in situ measurements. No directionality of ambient vibrations was observed at sites within the stable part of the slop

    Homogenizing instrumental earthquake catalogs – a case study around the Dead Sea Transform Fault Zone

    Get PDF
    The creation of a homogenized earthquake catalog is a fundamental step in seismic hazard analysis. The homogenization procedure, however, is complex and requires a good understanding of the heterogeneities among the available bulletins. Common events within the bulletins have to be identified and assigned with the most suitable origin time and location solution, while all the events have to be harmonized into a single magnitude scale. This process entails several decision variables that are usually defined using qualitative measures or expert opinion, without a clear exploration of the associated uncertainties. To address this issue, we present an automated and data-driven workflow that defines spatio-temporal margins within which duplicate events fall and converts the various reported magnitudes into a common scale. Special attention has been paid to the fitted functional form and the validity range of the derived magnitude conversion relations. The proposed methodology has been successfully applied to a wide region around the Dead Sea Transform Fault Zone (27N-36N, 31E-39E), with input data from various sources such as the International Seismological Centre and the Geophysical Institute of Israel. The produced public catalog contains more than 5500 events, between 1900 and 2017, with moment magnitude Mw above 3. The MATLAB/Python scripts used in this study are also available

    Guidelines for the good practice of surface wave analysis: a product of the InterPACIFIC project

    Get PDF
    Surface wave methods gained in the past decades a primary role in many seismic projects. Specifically, they are often used to retrieve a 1D shear wave velocity model or to estimate the VS,30 at a site. The complexity of the interpretation process and the variety of possible approaches to surface wave analysis make it very hard to set a fixed standard to assure quality and reliability of the results. The present guidelines provide practical information on the acquisition and analysis of surface wave data by giving some basic principles and specific suggestions related to the most common situations. They are primarily targeted to non-expert users approaching surface wave testing, but can be useful to specialists in the field as a general reference. The guidelines are based on the experience gained within the InterPACIFIC project and on the expertise of the participants in acquisition and analysis of surface wave data.Published2367-24205T. Sismologia, geofisica e geologia per l'ingegneria sismicaJCR Journa

    Efficacy of a new technique - INtubate-RECruit-SURfactant-Extubate - "IN-REC-SUR-E" - in preterm neonates with respiratory distress syndrome: Study protocol for a randomized controlled trial

    Get PDF
    Background: Although beneficial in clinical practice, the INtubate-SURfactant-Extubate (IN-SUR-E) method is not successful in all preterm neonates with respiratory distress syndrome, with a reported failure rate ranging from 19 to 69 %. One of the possible mechanisms responsible for the unsuccessful IN-SUR-E method, requiring subsequent re-intubation and mechanical ventilation, is the inability of the preterm lung to achieve and maintain an "optimal" functional residual capacity. The importance of lung recruitment before surfactant administration has been demonstrated in animal studies showing that recruitment leads to a more homogeneous surfactant distribution within the lungs. Therefore, the aim of this study is to compare the application of a recruitment maneuver using the high-frequency oscillatory ventilation (HFOV) modality just before the surfactant administration followed by rapid extubation (INtubate-RECruit-SURfactant-Extubate: IN-REC-SUR-E) with IN-SUR-E alone in spontaneously breathing preterm infants requiring nasal continuous positive airway pressure (nCPAP) as initial respiratory support and reaching pre-defined CPAP failure criteria. Methods/design: In this study, 206 spontaneously breathing infants born at 24+0-27+6 weeks' gestation and failing nCPAP during the first 24 h of life, will be randomized to receive an HFOV recruitment maneuver (IN-REC-SUR-E) or no recruitment maneuver (IN-SUR-E) just prior to surfactant administration followed by prompt extubation. The primary outcome is the need for mechanical ventilation within the first 3 days of life. Infants in both groups will be considered to have reached the primary outcome when they are not extubated within 30 min after surfactant administration or when they meet the nCPAP failure criteria after extubation. Discussion: From all available data no definitive evidence exists about a positive effect of recruitment before surfactant instillation, but a rationale exists for testing the following hypothesis: a lung recruitment maneuver performed with a step-by-step Continuous Distending Pressure increase during High-Frequency Oscillatory Ventilation (and not with a sustained inflation) could have a positive effects in terms of improved surfactant distribution and consequent its major efficacy in preterm newborns with respiratory distress syndrome. This represents our challenge. Trial registration: ClinicalTrials.gov identifier: NCT02482766. Registered on 1 June 2015
    • 

    corecore