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Abstract 

 

In the framework of the Seismic Hazard Harmonization in Europe (SHARE) project, the 

Swiss Seismological Service (SED) has performed an evaluation of two procedures 

developed to produce soil amplification models for 5% damped pseudo-spectral 

acceleration response spectra, each using different parameters to describe the soil 

properties. The goal of the work presented here is to evaluate the statistical consistency 

of the methods, with particular regard to their applicability to engineering practice. 

Additionally, we compare the results with those from a methodology internally 

developed by the SED, which is based on spectral modeling of ground motion using the 

quarter-wavelength approximation to parameterize soil conditions. Soil amplification is 

computed with respect to reference rock condition as defined for the probabilistic 

seismic hazard assessment performed during the SHARE project.  

 

For the comparison, a residual analysis was performed between the computed soil-

amplification functions from the three different methodologies, over a number of 

selected sites spanning different soil classes and ground motion levels. The analysis of 

the average residuals of these functions is useful to highlight the main differences 

between the proposed approaches, with special regard to the impact of soil resonances 

and anelastic attenuation within different frequency bands. 

 

The assessment was performed on a group of 88 selected stations of the Japanese 

KiKNet strong-motion network, for which complete logs of the shear-wave velocity 

profiles are available, in addition to a significant number of earthquake recordings. In a 

first step, average residuals were computed. Subsequently, amplification variability 

related to soil classes was investigated. The target of this second step was to perform 

the comparison by separately analyzing the impact of different soil and velocity classes, 

according to a soil-classification scheme proposed by Aristotle University of 

Thessaloniki (AUTH). In this paper the main results of these investigations are 

summarized and, when applicable, an interpretation of our findings is given. 
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1 - Introduction 

 

Large earthquakes cause significant surface ground shaking. The extent of this shaking 

at local scales is largely controlled by the effect of geology (e.g., Aki, 1988; Faccioli, 

1991). For example, the presence of loose low-velocity sediments overlying bedrock 

can result in significant amplification of ground motion at the surface. The increase in 

observed intensity can, in some cases, be equivalent to a unit in earthquake magnitude. 

This can mean the difference between different structural damage states or even 

collapse. In order to properly predict the effect of such local amplification on building 

and structures, an accurate modeling of soil behavior is necessary (e.g. Pitilakis, 2004). 

However, due to the complexity of the phenomenon, full seismic site-response 

evaluation requires detailed knowledge of the subsurface, which is often too expensive 

to be obtained over numerous sites. 

 

To overcome this lack of information, empirical and numerical amplification models are 

widely used. These models are typically based on the definition of soil proxies (e.g. the 

average shear-wave velocity over the first 30m Vs30, geotechnical classification, etc.) 

and are calibrated on observed ground motion and site-specific information. The 

reliability of such models, however, strongly depends on the size and consistency of the 

input datasets, in addition to the chosen level of model-simplification related to the 

underlying working assumptions (e.g. one-dimensionality of the soil profile, linear vs. 

non-linear models).  Nevertheless, progressive assimilation of new data and 

subsequent implementation of more sophisticated models help to reduce bias and 

epistemic uncertainty of the prediction. This has a direct impact on the reduction of the 

total uncertainty in ground motion analysis, seismic hazard and risk modeling. 

 

Unfortunately, the available site characterization information used for developing 

amplification models is highly fragmented worldwide and very few attempts of 

harmonization have been carried out so far. There is therefore a clear need to compare 

existing site-specific studies. In this context, it is essential to improve the current state of 

art and to define new strategies for future developments (Douglas & Edwards, 2016). 
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In this study we present the results of a comparison between three different 

amplification models for 5% damped pseudo-spectral acceleration response spectra 

calibrated on a reference ground motion prediction equation (GMPE) using rock 

reference condition defined by Vs30 of 800m/s. The work was initiated by the SHARE 

project (Woessner et al., 2015), with the goal of performing a round of independent 

verification of the procedures proposed by Aristotle University of Thessaloniki (AUTH) 

and Middle East Technical University (METU) for site-specific ground motion prediction. 

 

We extended the analysis by further comparing response spectral amplification 

functions with those from a methodology developed by the Swiss Seismological Service 

(SED). The comparison was done for 88 selected sites of the Japanese KiKNet strong-

motion network (Aoi et al., 2004). Our method to estimate soil amplification is described 

in Poggi et al. (2012a) and is based on the use of the quarter-wavelength approximation 

(Joyner et al., 1981; Boore, 2003) to obtain a frequency-dependent representation of 

soil conditions, including the average quarter-wavelength velocity (Qwl-Vs) and quarter-

wavelength impedance contrast (Qwl-IC). These proxies are then used to predict 

amplification factors using a parametric model calibrated against empirical amplification 

from direct observation and spectral modeling of a large number of earthquakes. 

 

It has to be stressed that, when comparing average response amplification functions, 

the difference in the ground motion reference rock conditions has to be accounted for 

through adjustment to a common reference (Cotton et al., 2007). The SHARE 

amplification functions (from AUTH and METU) are computed for a common rock 

reference profile with Vs30 of 800m/s (a modification of the Boore and Joyner (1997) 

generic rock profile; Van Houtte et al. (2011)). However the SED model is defined for a 

harder rock (Poggi et al., 2011) and therefore needs an adjustment. Not accounting for 

the difference in the reference would lead to a systematic bias in the distribution of the 

amplification residuals. The SED model has therefore been adjusted using the 

procedure proposed by Edwards et al. (2013).  
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In the following, we summarize the main steps of the study, including a description of 

the input datasets (ground-motion recordings and site classification) and of the 

procedures necessary to adjust the SED model to the common rock reference. Finally, 

a discussion on the sensitivity of the results to different site classes and average 

velocities is provided, and the main findings discussed. 

 

2 - Response spectral amplification functions 

 

2.1 - AUTH 

 

The scheme proposed by AUTH to compute response spectral amplification (Pitilakis et 

al., 2012) is similar to that prescribed by EUROCODE8 (EC8, European Committee for 

Standardization, 2004). Recipes are provided to reconstruct site-dependent design 

response spectra for a number of soil classes, which are classified on the basis of the 

travel-time average velocity down to the bedrock depth (VsZ) and of estimates of the 

fundamental frequency of resonance at the site (f0). The major difference with respect to 

EC8 is the classification scheme, with an extended number of classes (8, as opposed to 

5 in EC8), is that the AUTH approach explicitly accounts for the resonance of soft 

sediments sites. Although this method does not directly provide response spectral 

amplification functions, it is possible to derive such functions indirectly by normalizing 

case represents the reference rock of the computation.  

 

2.2 - METU 

 

METU proposed a GMPE-like approach to obtain non-linear response spectral 

amplification, ( ) which is based on a modification of the 

approach of Abrahamson and Silva (2008). Their method makes use of the average 

travel-time velocity over the first 30m (Vs30) and peak ground acceleration (PGA) 

estimates to calibrate the model coefficients and to subsequently back-reconstruct the 

non-linear amplification functions. For the comparison shown here, however, only low to 
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moderate magnitude earthquakes were used (Mw

to be in the range of the linear soil response only. 

 

2.3 - SED 

 

The SED has proposed a method to predict anelastic Fourier amplification functions 

from local site parameters estimated using the quarter-wavelength (Qwl) representation 

(Poggi et al., 2012a). The method was calibrated by directly comparing empirical 

amplification from parametric spectral modeling of earthquake recordings with average 

quarter-wavelength velocities (Qwl-Vs) and impedance contrasts (Qwl-IC) from 220 soft 

sediment sites of the Japanese KiKNet strong-motion network. The approach was 

based on procedures used by Edwards et al. (2011) and Poggi et al. (2012b) for 

predicting the vertical-to-horizontal spectral ratios for rock and soft sediment sites. 

 

While this approach does not directly model amplification factors in terms of response 

spectra, response spectral amplification can be subsequently obtained through 

stochastic modeling of the target earthquake event (Boore, 2003). In practice, for each 

given magnitude, distance, source depth and stress-drop, a number of synthetic 

seismograms were generated using random vibration theory (Cartwright and Longuet-

Higgins (1956), Liu and Pezeshk (1999)). 5% damped response spectra can then be 

derived from these recordings, both for a reference rock profile and by subsequently 

applying the corresponding predicted Fourier amplification function of the particular site. 

The ratio between the response spectrum on sediments and that on the reference rock 

was then calculated to obtain the final amplification function in terms of response 

spectral ordinates. Since we deal with anelastic amplification functions, the spectra of 

the reference rock were adjusted for the attenuation (Kappa0; Anderson and Hough, 

1984) of the Japanese reference profile. This reference profile and the value of 0.023s 

for Kappa0 have been established in a previous study (Poggi et al., 2013). 
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3 - Site selection and input parameters 

 

For the comparison in our study, a subset of 88 (out of a total of 660) stations of the 

Japanese KiKNet strong-motion network (Aoi et al., 2004) was used. The selection was 

driven by the requirements of the AUTH classification scheme, whose site classes were 

available only for a subset of KiKNet stations (Table 1, Figure 1, Figure 2 top) in 

southern Japan. For each test site, Vs30 values were computed as the travel-time 

average from the S-wave velocity profiles made available by the Japanese National 

Research Institute for Earth Science and Disaster Prevention (NIED), as obtained from 

downhole seismic logging. The selection covers a wide range of Vs30 values between 

100 and 800m/s, with the larger number of sites in the interval 300-400m/s (Figure 2 

bottom). PGA values were obtained from 37382 recordings spanning a wide range of 

magnitude and distance combinations. PGA is well represented in the range 0.001-1 

m/s2 (Figure 3); values above and below were discarded from the analysis in order to 

focus on ground-motions of engineering interest, whilst avoiding strong non-linear soil 

behavior, which is not considered in this study. 

 

For the stochastic modeling, we produced a large set of response spectra covering a 

representative combination of magnitude, distance and stress-drop values as listed in 

Table 2. We noted relatively limited impact of the choice of individual parameter 

combinations due to the fact that a ratio is taken between amplified site-specific spectra 

and reference spectra with identical input parameters for the source and path. For the 

comparison with AUTH and METU results, all response spectral amplification functions 

obtained from these input parameter combinations were averaged (in the log-space) to 

produce mean site-specific models. 

 

4 - Adjusting for a common reference 

 

The AUTH and METU response spectral amplification functions are referenced to a 

common rock condition, which was defined within the SHARE project as a piece-wise 

gradient-like velocity profile with Vs30 (travel-time average shear-wave velocity in the 
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upper 30m) of 800m/s (see Boore and Joyner, 1997). This reference is different to that 

used in the SED model (Figure 4), which was directly calibrated to the rather different 

rock conditions of Japan (Poggi et al., 2013). The SED Japanese reference profile 

consists of a gradient with a steep increase in velocity in the first 300m, from about 

1100m/s to almost 3000m/s. The Vs30 of this reference is about 1350m/s, which 

identifies the profile as a hard-rock reference in standard Vs30-based classification 

schemes (e.g. NEHRP, Building Seismic Safety Council, 2003). A more exhaustive 

description of how this reference has been retrieved can be found in Poggi et al. (2013). 

 

To adjust the SED stochastic amplification model to the SHARE reference conditions, 

we make use of a procedure based on the quarter-wavelength method as described in 

Edwards et al. (2013). According to this approach, the SED Fourier amplification 

functions ASH(f) has to be multiplied by a frequency-dependent correction function C(f) 

(Figure 5) to compensate for the different reference conditions: 

 

. Eq. 1 

 

where C(f) is a function of the quarter-wavelength average-velocities of both the local 

(SED) and the target (SHARE) reference profiles: 

 

. Eq. 2 

 

It can be noticed that the SHARE rock profile has much lower velocities close to the 

surface with respect to the Japanese reference. The correction function leads therefore 

to a general reduction of the amplification level over the analyzed frequency bands 

(Figure 6). This is also evident by comparing the amplification functions of the two 

reference rock profiles (Figure 5) with respect to the common basement reference (a 

half-space with Vs of ~3000m/s). 
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From the adjusted Fourier amplification models, response spectral amplification 

functions are then derived by means of the random vibration theory approach (Boore, 

2003). 

 

5 - Site classes  

 

In this study the comparison between the different response spectral amplification 

functions is performed for different soil conditions separately. We used two different 

approaches to discriminate soil types; a Vs30 approach and a soil classification 

scheme. For the Vs30 based approach, it was decided to split the available 88 sites into 

5 classes, ranging from 200m/s to 700m/s with a 100m/s interval. An additional class for 

those remaining sites with Vs30 > 700m/s is also used to represent rock conditions. 

Complementary to this approach, for the soil type classification we used the AUTH 

classification scheme. For each of the 88 selected stations, bedrock depth (Z) was first 

evaluated by AUTH using the available borehole logs from the KiKNet database and the 

average velocity (VsZ) calculated, while f0 of the sites was empirically determined form 

horizontal to vertical Fourier spectral ratios (H/V) of earthquake recordings. However, 

using such approach, some subclasses were not sufficiently populated to produce 

usable statistics. Therefore, some grouping of the AUTH classes was necessary 

(B1+B2 and C1+C2+C3). Moreover, class D was not represented in the original 

selection of 88 sites, and is therefore disregarded from the analysis. 

 

6 - Comparing amplification functions 

 

6.1 - Average of all sites 

 

Firstly, we compared response spectral amplification functions from the AUTH, METU 

and SED models for all the available 88 sites (e.g. Figure 7) and then computed the 

mean of the log-residual distribution (Figure 8). We note that residual refers to the 

difference between models only, and does not imply any comparison with data. The 

comparison was performed both with and without adjustment for the common reference 
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(Figure 9). This was useful to highlight the general impact on ground motion 

amplification of using a homogeneous reference, which results in a positive offset of the 

residual functions, while keeping nevertheless the main features of the amplification 

models (e.g. resonance peaks and troughs) substantially unmodified. 

 

The comparison between AUTH and METU results showed good agreement (Figure 

8a). Although the mean of the log-residual distribution is slightly - but consistently - 

shifted to positive values (the AUTH model predicts stronger amplification), the data 

scatter is quite small over the whole frequency range of the comparison (0.5-100Hz). 

This is partially due to the fact that the two approaches were based on the same 

dataset, but it can also be explained by the simplified shapes of the used amplification 

functions, which can only partially account for local phenomena like resonance and 

anelastic attenuation. 

 

On the contrary, SED predictions are strongly site-dependent, as they are based on the 

whole local velocity profile, with strong influence from the particular velocity interfaces at 

shallow depths. The velocity contrasts are the main source of resonance effects. 

Moreover, the coefficients of the SED prediction equation are implicitly calibrated using 

the site Kappa0 operators. By comparing SED functions with the AUTH (Figure 8b) and 

METU (Figure 8c) results, therefore, larger deviations can be observed on average, in 

particular at intermediate frequencies - at around 5Hz - where the average effect of 

resonance in soft sediment site is more pronounced, and the SED model predicts the 

larger site-specific amplifications. The scatter of the residual distribution is also 

generally higher over the whole analyzed frequency range due to the highly site-specific 

nature of the SED computations. In Figure 9, the broadband offset is removed from the 

amplification function difference, which is always negative, meaning that for the 

reference rock condition (Vs30 of 800 m/s) AUTH and METU predict higher ground 

motions than the adjusted SED model. 
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6.2 - Analysis for the site classes 

 

In a second step, the analysis was performed on sub-selections of sites based on Vs30 

and soil type classification as previously introduced. In this case, a wider spectrum of 

variability of the log-residual curves was found. In more detail, comparing the AUTH and 

METU results shows a moderate positive offset of the residual functions (Figure 10); 

this implies higher values of the AUTH amplification model with respect to METU, on 

average. Differences are more evident at the edges of the soil class spectrum, and 

particularly for very stiff soil/rock conditions (Vs30 > 700m/s). 

 

These differences, other than to the different approaches used for the analyses, might 

be addressed to some bias in the selection of the sites used for the calibration of the 

two models. Reliable information about the velocity structure beneath a seismic station 

is not always available, and therefore Vs30 is often extrapolated by indirect methods, 

e.g. by geological/geotechnical classification of the surface deposits. Such an approach, 

however, might introduce large uncertainties in the metadata of the calibration dataset, 

which can then affect the stability of the resulting amplification functions. 

 

On the other hand, the SED response amplification model shows more significant 

deviations in comparison to the two SHARE models (Figure 11 and Figure 12). In this 

case, dependency on the soil type is more evident. A lower amplification of the SED 

model for stiff material is observed when compared to the SHARE models, while a 

higher amplification is modeled the softer the sediments. Particularly interesting is to 

observe how the trough (minimum) of the amplification-difference plots moves between 

the different curves from low frequency (about 3Hz) in loose material, to high frequency 

(about 10Hz) in rock-like sites. This is clear confirmation that such minimum should be 

related to presence of site-specific resonance effects, which are (to a certain extent) 

accounted for in the SED model, but not in the SHARE models. 

 

Anelasticity has a significant effect on SED Fourier amplification models (as seen in 

Figure 6). In terms of response spectral amplification, this effect is less substantial due 
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to the reduced sensitivity of high oscillator-frequency earthquake response spectra to 

the same driving (i.e. FAS, Fourier Amplitude Spectra) frequencies (Bora et al., 2016). 

The result is typically seen as a minimum in the SED response spectral amplification 

functions, leading to a peak in the amplification-difference plots. Evaluating the impact 

of anelasticity on the distribution of the response spectral amplification residuals is 

therefore not straightforward. Most likely, the positive peak at about 20Hz in the residual 

difference plots (Figure 11 and Figure 12), which is rather stable and present in all the 

curves, can be related to the amplitude decay (due to local attenuation) in the SED 

amplification model. From this observation, it appears that the SHARE models may not 

fully account for the effect of attenuation at high frequencies, a point that should be 

further investigated. 

 

The reader can find the actual amplification factors (in linear scale) also presented in 

Table 3, Table 4 and Table 5 for a selected number of frequencies. 

 

7 - Summary and conclusions 

 

The comparison between 5% damped response spectral amplification functions from 

AUTH, METU and SED provides useful insights about the present level of epistemic 

uncertainty in site-response modeling using empirical approaches. It is presently not 

possible (and it is certainly not the scope of this study) to define which one of the three 

methods is the most suitable or the best performing in general, because each of the 

tested approaches was implemented following a different strategy and according to 

different requirements in terms of input and output constraints. In fact, for the same 

reason, we tried to avoid any direct comparison between modeled and observed 

amplification functions. It is nevertheless possible to summarize few important 

considerations out of the performed analysis. 

 

First, it is important to understand the source of the variability between methods. As we 

observed, the largest differences are seen in those frequency bands where resonance 

phenomena and effect of anelastic attenuation are statistically more relevant. The SED 
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approach is more likely to explain the occurrence of these phenomena, using more 

input information required for the modeling (the entire velocity profile and site-specific 

Kappa0, and not only Vs30). On the other hand, the METU model is less demanding in 

terms of site information (only Vs30 is required, aside from PGA to quantify non-linearity 

level), but appears to not adequately represent the occurrence of the aforementioned 

resonance phenomena and is instead averaging across a wide variety of sites. AUTH  

approach is potentially a good compromise between type and amount of input 

calibration parameters (average velocity VsZ and fundamental frequency of resonance 

f0) and model complexity. However, the use of simplified design spectral shapes tends 

to significantly smear the site-specific information as well, losing the benefit of 

accounting for site-resonance. Moreover, the SHARE models might be affected by the 

assumptions and metadata used to derive the models. With the observations in Figure 

9, we might argue that the ground motion at reference rock-condition of Vs30 of 800m/s 

is affected by softer sites used to derive the model. Presently, this is simply a 

speculation that might be proven once the quality of the metadata improves in the 

future. 

 

What is currently missing in this study, and that is certainly the target of a follow-up 

analysis, is the evaluation of the impact of uncertainty from the site parameters, and the 

dependence of the results on magnitude and distance. It is a well-known fact that most 

site proxies, particularly the Vs30, are often poorly determined at single sites and will 

improve in the future due to efforts at national level (e.g. Michel et al., 2014). For large-

scale mapping, furthermore, these proxies are often derived from other proxies such as 

topographic slope (Wald and Allen, 2007) shown to be unreliable for site-specific 

studies (Lemoine et al., 2012). Although the effect of uncertainty of site proxies on the 

derived amplification can easily be guessed, a rigorous quantification, or even better the 

modeling of this effect is still missing in many applications. 
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FIGURES 
 
 
 

 
 

Figure 1. Location of the 88 selected testing sites (white circles) of the Japanese KiKNet strong-

motion network (gray circles). 
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Figure 2. Distribution of the AUTH soil classes (on top) and Vs30 values (bottom) for the 88 

selected sites of the Japanese KiKNet strong-motion network. Note that class D was not 

excluded, but is not represented in the selection. 

 
 

 
 
Figure 3. Distribution of the 37382 PGA values available for the 88 selected sites of the 

Japanese KiKNet strong-motion network. 
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Figure 4. Comparison between the SHARE (in gray) and SED (in black) Japanese rock 

reference S-wave velocity profiles. 

 

 
 
Figure 5. The correction function C(f) (in black) in comparison with the quarter-wavelength 

amplification functions of the SED Japanese (in blue) and SHARE (in red) references. 
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A) Vs30 = 318m/s 

 
 

B) Vs30 = 620m/s 

 
 

 
Figure 6. Example of Fourier spectral amplification functions at two stations of the Japanese 

KiK-Net network, before (in red) and after (in green) the correction for the SHARE reference. 

The correction results in a general decrease in the amplification level over the whole frequency 

band. 
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A) Vs30 = 279m/s, Class C2 

 

D) Vs30 = 342m/s, Class E 

 
E) Vs30 = 440m/s, Class C1 

 

B) Vs30 = 504m/s, Class E 

 
C) Vs30 = 940m/s, Class B1 F) Vs30 = 1387m/s, Class A 

 
Figure 7. Examples of comparison between AUTH, METU and SED response spectral 

amplification at sites of different characteristics (Vs30 and soil class as in Table 1). 
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A) 

 
B) 

 
C) 

 
Figure 8. Distribution of log-residuals (base 10) of the three comparisons between response 

spectral amplification functions from METU, AUTH and SED in the frequency range 0.5-100Hz 

(white error bars show mean +/- standard deviation). The three analyzed models are here 

referred to the same common reference. All 88 selected sites are used for the statistic. 
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A)  
 
 

B)  
 
 
Figure 9. Comparison between the SED-AUTH and SED-METU log-residual mean (base 10) 

without (in magenta) and with (in green) the adjustment for the common SHARE reference. 

From the picture the effect of the reference correction on the analysis is clear. 
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A)  
 

B)  
 
 
Figure 10. Variability on the average log-difference between AUTH and METU models with 

respect to different soil classes (A) and Vs30 ranges (B). The gray area below 1Hz indicates the 

region where the statistic might be biased by lack of sufficient data points. 
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A)  
 

B)  
 
 
Figure 11. Variability on the average log-difference between AUTH and SED models with 

respect to different soil classes (A) and Vs30 ranges (B). The gray area below 1Hz indicates the 

region where the statistic might be biased by lack of sufficient data points. 
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A)  
 

B)  
 
 
Figure 12. Variability on the average log-difference between METU and SED models with 

respect to different soil classes (A) and Vs30 ranges (B). The gray area below 1Hz indicates the 

region where the statistic might be biased by lack of sufficient data points. 
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TABLES 

 

 
Table 1. List of the 88 target stations of the Japanese KiKNet strong-motion network for which 

AUTH soil classes were available. 
 
 
 

Parameter Range 
Magnitude (Mw) 4, 5, 6 
Joyner-Boore Distance (RJB) 10, 20, 30, 50 Km 
Hypocentral Depth (D) 12 Km 
Fault Model Wells and Coppersmith (1994) Strike-

Slip with 79 degree dip 
Attenuation Model Edwards et al. (2011) 
Stress drop ( ) 60, 90, 120 bars 

 
Table 2. Ranges of the parameters used for the stochastic modeling of response spectra. 

 
 

ID Vs30 Class ID Vs30 Class ID Vs30 Class ID Vs30 Class 

EHMH04 260 C1 HYGH06 369 C2 OKYH05 620 B1 TTRH01 437 B1 

EHMH05 364 C2 HYGH07 506 B1 OKYH06 555 B2 TTRH02 310 C1 

EHMH06 717 B1 HYGH08 288 E OKYH07 940 B1 WKYH01 463 E 

FKOH01 588 E HYGH09 365 B2 OKYH08 694 B1 WKYH02 369 E 

FKOH02 273 C2 HYGH10 224 C3 OKYH10 504 E WKYH03 547 E 

FKOH03 504 B1 HYGH11 271 C2 OKYH11 543 B1 WKYH04 550 E 

FKOH05 777 E HYGH12 677 B1 OKYH12 757 B1 WKYH05 591 C3 

HRSH01 403 C2 KGWH01 255 C2 OSKH03 408 C2 WKYH06 756 E 

HRSH02 391 E KGWH02 185 C2 OSKH04 529 B1 WKYH07 316 C2 

HRSH03 487 C2 KOCH01 363 C2 SIGH01 563 E WKYH08 344 C1 

HRSH04 458 E KOCH02 394 E SIGH02 569 E WKYH09 349 C1 

HRSH05 382 B2 KOCH03 677 B1 SIGH03 393 B2 WKYH10 466 C2 

HRSH06 279 C2 NARH01 338 C2 SIGH04 483 B2 YMGH01 1387 A 

HRSH07 462 B2 NARH03 497 E SMNH01 464 C2 YMGH02 398 C2 

HRSH08 781 B1 NARH04 592 B1 SMNH02 510 C1 YMGH03 536 B1 

HRSH09 496 B1 NARH05 398 E SMNH03 440 C1 YMGH04 659 B1 

HRSH10 265 C2 NARH06 370 E SMNH04 285 E YMGH05 450 C2 

HYGH01 344 C1 NIGH11 375 C1 SMNH05 711 B1 YMGH07 351 C2 

HYGH02 612 B1 NIGH12 553 C1 SMNH06 293 C1 YMGH08 342 E 

HYGH03 528 C2 OKYH01 238 C2 SMNH07 318 C1 YMGH09 304 C2 

HYGH04 476 C2 OKYH03 317 C2 TKSH02 349 E YMGH10 526 C2 

HYGH05 533 E OKYH04 360 E TKSH03 404 E YMGH11 711 B1 
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