94 research outputs found

    Ультрадисперсные порошки на основе железа как катализаторы синтеза жидких углеводородов из СО и Н[2]

    Get PDF
    International audienceTo date, uniparental disomy (UPD) with phenotypic relevance is described for different chromosomes and it is likely that additional as yet unidentified UPD phenotypes exist. Due to technical difficulties and limitations of time and resources, molecular analyses for UPD using microsatellite markers are only performed in cases with specific phenotypic features. In this study, we carried out a whole genome UPD screening based on a microarray genotyping technique. Six patients with the diagnosis of both complete or segmental UPD including Prader-Willi syndrome (PWS; matUPD15), Angelman syndrome (AS; patUPD15), Silver-Russell syndrome (SRS; matUPD7), Beckwith-Wiedemann syndrome (BWS; patUPD11p), pseudohypoparathyroidism (PHP; patUPD20q) and a rare chromosomal rearrangement (patUPD2p, matUPD2q), were genotyped using the GeneChip Human Mapping 10K Array. Our results demonstrate the presence of UPD in the patients with high efficiency and reveal clues about the mechanisms of UPD formation. We thus conclude that array based SNP genotyping is a fast, cost-effective, and reliable approach for whole genome UPD screening

    The 3M Complex Maintains Microtubule and Genome Integrity

    Get PDF
    CUL7, OBSL1, and CCDC8 genes are mutated in a mutually exclusive manner in 3M and other growth retardation syndromes. The mechanism underlying the function of the three 3M genes in development is not known. We found that OBSL1 and CCDC8 form a complex with CUL7 and regulate the level and centrosomal localization of CUL7, respectively. CUL7 depletion results in altered microtubule dynamics, prometaphase arrest, tetraploidy and mitotic cell death. These defects are recaptured in CUL7 mutated 3M cells and can be rescued by wild-type, but not 3M patients-derived CUL7 mutants. Depletion of either OBSL1 or CCDC8 results in similar defects and sensitizes cells to microtubule damage as loss of CUL7 function. Microtubule damage reduces the level of CCDC8 that is required for the centrosomal localization of CUL7. We propose that CUL7, OBSL1, and CCDC8 proteins form a 3M complex that functions in maintaining microtubule and genome integrity and normal development

    A Point Mutation in PDGFRB Causes Autosomal-Dominant Penttinen Syndrome

    Get PDF
    Penttinen syndrome is a distinctive disorder characterized by a prematurely aged appearance with lipoatrophy, epidermal and dermal atrophy along with hypertrophic lesions that resemble scars, thin hair, proptosis, underdeveloped cheekbones, and marked acro-osteolysis. All individuals have been simplex cases. Exome sequencing of an affected individual identified a de novo c.1994T>C p.Val665Ala variant in PDGFRB, which encodes the platelet-derived growth factor receptor β. Three additional unrelated individuals with this condition were shown to have the identical variant in PDGFRB. Distinct mutations in PDGFRB have been shown to cause infantile myofibromatosis, idiopathic basal ganglia calcification, and an overgrowth disorder with dysmorphic facies and psychosis, none of which overlaps with the clinical findings in Penttinen syndrome. We evaluated the functional consequence of this causative variant on the PDGFRB signaling pathway by transfecting mutant and wild-type cDNA into HeLa cells, and transfection showed ligand-independent constitutive signaling through STAT3 and PLCγ. Penttinen syndrome is a clinically distinct genetic condition caused by a PDGFRB gain-of-function mutation that is associated with a specific and unusual perturbation of receptor function

    Biallelic KIF24 Variants Are Responsible for a Spectrum of Skeletal Disorders Ranging From Lethal Skeletal Ciliopathy to Severe Acromesomelic Dysplasia

    Get PDF
    Skeletal dysplasias comprise a large spectrum of mostly monogenic disorders affecting bone growth, patterning, and homeostasis, and ranging in severity from lethal to mild phenotypes. This study aimed to underpin the genetic cause of skeletal dysplasia in three unrelated families with variable skeletal manifestations. The six affected individuals from three families had severe short stature with extreme shortening of forelimbs, short long-bones, and metatarsals, and brachydactyly (family 1); mild short stature, platyspondyly, and metaphyseal irregularities (family 2); or a prenatally lethal skeletal dysplasia with kidney features suggestive of a ciliopathy (family 3). Genetic studies by whole genome, whole exome, and ciliome panel sequencing identified in all affected individuals biallelic missense variants in KIF24, which encodes a kinesin family member controlling ciliogenesis. In families 1 and 3, with the more severe phenotype, the affected subjects harbored homozygous variants (c.1457A>G; p.(Ile486Val) and c.1565A>G; p.(Asn522Ser), respectively) in the motor domain which plays a crucial role in KIF24 function. In family 2, compound heterozygous variants (c.1697C>T; p.(Ser566Phe)/c.1811C>T; p.(Thr604Met)) were found C-terminal to the motor domain, in agreement with a genotype-phenotype correlation. In vitro experiments performed on amnioblasts of one affected fetus from family 3 showed that primary cilia assembly was severely impaired, and that cytokinesis was also affected. In conclusion, our study describes novel forms of skeletal dysplasia associated with biallelic variants in KIF24. To our knowledge this is the first report implicating KIF24 variants as the cause of a skeletal dysplasia, thereby extending the genetic heterogeneity and the phenotypic spectrum of rare bone disorders and underscoring the wide range of monogenetic skeletal ciliopathies. (c) 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).Peer reviewe

    International Teaching Programme

    Get PDF
    Nicolaides-Baraitser syndrome (NBS) is an infrequently described condition, thus far reported in five cases. In order to delineate the phenotype and its natural history in more detail, we gathered data on 18 hitherto unreported patients through a multi-center collaborative study, and follow-up data of the earlier reported patients. A detailed comparison of the 23 patients is provided. NBS is a distinct and recognizable entity, and probably has been underdiagnosed until now. Main clinical features are severe mental retardation with absent or limited speech, seizures, short stature, sparse hair, typical facial characteristics, brachydactyly, prominent finger joints and broad distal phalanges. Some of the features are progressive with time. The main differential diagnosis is Coffin-Siris syndrome. There is no important gender difference in occurrence and frequency of the syndrome, and all cases have been sporadic thus far. Microarray analysis performed in 14 of the patients gave normal results. Except for the progressive nature there are no clues to the cause. (C) 2009 Wiley-Liss, Inc

    NovelRPL13Variants and Variable Clinical Expressivity in a Human Ribosomopathy With Spondyloepimetaphyseal Dysplasia

    Get PDF
    Spondyloepimetaphyseal dysplasias (SEMDs) are a heterogeneous group of disorders with variable growth failure and skeletal impairments affecting the spine and long bone epiphyses and metaphyses. Here we report on four unrelated families with SEMD in which we identified two monoallelic missense variants and one monoallelic splice site variant inRPL13, encoding the ribosomal protein eL13. In two out of four families, we observed autosomal dominant inheritance with incomplete penetrance and variable clinical expressivity; the phenotypes of the mutation-positive subjects ranged from normal height with or without hip dysplasia to severe SEMD with severe short stature and marked skeletal dysplasia.In vitrostudies on patient-derived dermal fibroblasts harboringRPL13missense mutations demonstrated normal eL13 expression, with proper subcellular localization but reduced colocalization with eL28 (p<0.001). Cellular functional defects in fibroblasts from mutation-positive subjects indicated a significant increase in the ratio of 60S subunits to 80S ribosomes (p= 0.007) and attenuated global translation (p= 0.017). In line with the human phenotype, ourrpl13mutant zebrafish model, generated by CRISPR-Cas9 editing, showed cartilage deformities at embryonic and juvenile stages. These findings extend the genetic spectrum ofRPL13mutations causing this novel human ribosomopathy with variable skeletal features. Our study underscores for the first time incomplete penetrance and broad phenotypic variability in SEMD-RPL13 type and confirms impaired ribosomal function. Furthermore, the newly generatedrpl13mutant zebrafish model corroborates the role of eL13 in skeletogenesis. (c) 2020 The Authors.Journal of Bone and Mineral Researchpublished by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR)..Peer reviewe

    Pseudoachondroplasia and Multiple Epiphyseal Dysplasia: A 7-Year Comprehensive Analysis of the Known Disease Genes Identify Novel and Recurrent Mutations and Provides an Accurate Assessment of Their Relative Contribution

    Get PDF
    Pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED) are relatively common skeletal dysplasias resulting in short-limbed dwarfism, joint pain, and stiffness. PSACH and the largest proportion of autosomal dominant MED (AD-MED) results from mutations in cartilage oligomeric matrix protein (COMP); however, AD-MED is genetically heterogenous and can also result from mutations in matrilin-3 (MATN3) and type IX collagen (COL9A1, COL9A2, and COL9A3). In contrast, autosomal recessive MED (rMED) appears to result exclusively from mutations in sulphate transporter solute carrier family 26 (SLC26A2). The diagnosis of PSACH and MED can be difficult for the nonexpert due to various complications and similarities with other related diseases and often mutation analysis is requested to either confirm or exclude the diagnosis. Since 2003, the European Skeletal Dysplasia Network (ESDN) has used an on-line review system to efficiently diagnose cases referred to the network prior to mutation analysis. In this study, we present the molecular findings in 130 patients referred to ESDN, which includes the identification of novel and recurrent mutations in over 100 patients. Furthermore, this study provides the first indication of the relative contribution of each gene and confirms that they account for the majority of PSACH and MED. Hum Mutat 33:144–157, 2012. © 2011 Wiley Periodicals, Inc

    Infigratinib in children with achondroplasia:the PROPEL and PROPEL 2 studies

    Get PDF
    BACKGROUND: Achondroplasia is the most common short-limbed skeletal dysplasia resulting from gain-of-function pathogenic variants in fibroblast growth factor receptor 3 (FGFR3) gene, a negative regulator of endochondral bone formation. Most treatment options are symptomatic, targeting medical complications. Infigratinib is an orally bioavailable, FGFR1–3 selective tyrosine kinase inhibitor being investigated as a direct therapeutic strategy to counteract FGFR3 overactivity in achondroplasia. OBJECTIVES: The main objective of PROPEL is to collect baseline data of children with achondroplasia being considered for future enrollment in interventional studies sponsored by QED Therapeutics. The objectives of PROPEL 2 are to obtain preliminary evidence of safety and efficacy of oral infigratinib in children with achondroplasia, to identify the infigratinib dose to be explored in future studies, and to characterize the pharmacokinetic (PK) profile of infigratinib and major metabolites. DESIGN: PROPEL (NCT04035811) is a prospective, noninterventional clinical study designed to characterize the natural history and collect baseline data of children with achondroplasia over 6−24 months. PROPEL 2 (NCT04265651), a prospective, phase II, open-label study of infigratinib in children with achondroplasia, consists of a dose-escalation, dose-finding, and dose-expansion phase to confirm the selected dose, and a PK substudy. METHODS AND ANALYSIS: Children aged 3−11 years with achondroplasia who completed ⩾6 months in PROPEL are eligible for PROPEL 2. Primary endpoints include treatment-emergent adverse events and change from baseline in annualized height velocity. Four cohorts at ascending dose levels are planned for dose escalation. The selected dose will be confirmed in the dose-expansion phase. ETHICS: PROPEL and PROPEL 2 are being conducted in accordance with the International Conference on Harmonization Good Clinical Practice guidelines, principles of the Declaration of Helsinki, and relevant human clinical research and data privacy regulations. Protocols have been approved by local health authorities, ethics committees, and institutions as applicable. Parents/legally authorized representatives are required to provide signed informed consent; signed informed assent by the child is also required, where applicable. DISCUSSION: PROPEL and PROPEL 2 will provide preliminary evidence of the safety and efficacy of infigratinib as precision treatment of children with achondroplasia and will inform the design of future studies of FGFR-targeted agents in achondroplasia. REGISTRATION: ClinicalTrials.gov: NCT04035811; NCT04265651

    Finger creases lend a hand in Kabuki syndrome.

    Get PDF
    International audienceKabuki syndrome (KS) is a rare syndrome associating malformations with intellectual deficiency and numerous visceral, orthopedic, endocrinological, immune and autoimmune complications. The early establishment of a diagnostic of KS leads to better care of the patients and therefore prevents complications such as perception deafness, severe complications of auto-immune diseases or obesity. However, the diagnosis of KS remains difficult because based on the appreciation of facial features combined with other highly variable features. We describe a novel sign, namely the attenuation and/or congenital absence of the IPD crease of the third and fourth fingers associated with limitation of flexion of the corresponding joints, which seems to be specific of KS and could help the clinician to diagnose KS
    corecore