22 research outputs found

    Etanercept in the Treatment of Generalized Annular Pustular Psoriasis

    Get PDF

    Phylogeography and genomic epidemiology of SARS-CoV-2 in Italy and Europe with newly characterized Italian genomes between February-June 2020

    Get PDF

    Control of ligand-receptor interaction by tuning molecular environment

    No full text
    L'adhésion cellulaire est un processus biologique fondamental contrôlé par des liaisons moléculaires spécifiques entre ligands et récepteurs attachés à des surfaces. La formation et la rupture de ces liens dépendent de facteurs cinétiques, mécaniques et structurelles. Le but de ce travail était d'observer comment l'interaction ICAM-1 - anti ICAM-1 pouvait être modifié en jouant i) sur la multivalence de molécules impliquées dans la liaison ii) sur la topographie de surface et iii) sur la mobilité des ligands. A cette fin, on a principalement utilisé une chambre à flux laminaire, complété par une détection de molécule unique par fluorescence.L'étude sur les effets de multivalence, utilisant des monomères et dimères d'ICAM-1, a été réalisée en absence et en présence d'une force mécanique, montrant la plus grande stabilité des liaisons divalentes. En outre, un renforcement avec la force et le temps a été trouvé et décrit avec une fonction à deux paramètres, montrant, pour les liaisons divalentes, un comportement intermédiaire entre rupture parallèles et successives des liaisons. La fréquence d'adhésion des liaisons monovalentes et bivalentes présente différentes valeurs causées par la différence de longueur de ces molécules.Les expériences d'adhésions ont été effectuées en variant la topographie du substrat pour les molécules étudiées. Une comparaison des cinétiques de liaisons sur ces surfaces ne montrent pas de différences soit dans la formation ou dans la rupture. Pour interpréter ces résultats, un modèle qui prend en compte la zone de contact réel devrait être construit à partir des images AFM des échantillons.Dans l'écoulement, le temps de contact entre les molécules est contrôlé par la convection de microsphères. Des résultats récents montrent qu'un minimum de temps est requis pour former la liaison (Robert et al. 2011). Pour tester cette prédiction, les ligands sont ancrés à une bicouche lipidique (SLB) pour étudier comment la diffusion peut modifier l'adhésion. Expérimentalement, les fréquences d'adhésion des liaisons ont montré un comportement similaire pour les SLB fixes et fluides. Toutefois, la simulation numérique prédit un effet sur la formation de la liaison, même lorsque la diffusion des ligands est faible. Il semblerait que la diffusion joue un rôle dans la dissociation de la liaison, réduisant fortement la valeur de koff pour une bicouche fluide. Cet effet peut être expliqué par la présence éventuelle de liaisons multiples dues à l'accumulation des ligands sur la surface de contact.Cell adhesion is a fundamental biological process mediated by specific molecular bonds formed by ligands and receptors attached to surfaces. Formation and rupture of these bonds depend on kinetic, mechanical and structural factors. The goal of this work was to observe how the ICAM-1 – anti ICAM-1 interaction can be modified by playing i) on the multivalency of molecules involved in the bond ii) on the topography of surface and iii) on the mobility of ligands. The main technique used for this purpose was the laminar flow chamber, completed by single-particle tracking in fluorescence.The study on multivalency effects, using monomeric and dimeric ICAM-1, was performed in absence and presence of mechanical force, showing the higher stability of divalent bonds. Also, a force- and time- strengthening dependence was found and described with a two-parameter function, showing, for divalent bonds, an intermediate behaviour between parallel and subsequent rupture of bonds. The adhesion frequency of monovalent and divalent bonds exhibit different values accounted by difference in length of these molecules.Adhesion experiments were performed varying the topography of the substrate for the investigated molecules. A comparison of bond kinetics on these surfaces did not show differences either in attachment or in rupture. To interpret these results, a model which takes into account the real contact area should be built from the AFM images of the samples.In the flow, the contact time between molecules is controlled by convection of microspheres. Recent results show that there is a minimal time required to form the bond (Robert et al. 2011). To test this prediction, ligands were anchored to supported lipid bilayer (SLB) to investigate how the diffusion can modify the adhesion. Experimentally, the adhesion frequencies of the bonds showed similar behaviour for fixed and fluid SLB. While, numerical simulation predicted an effect on bond formation even at low ligand diffusion. The diffusion seemed to play a role in bond dissociation, strongly reducing the value of koff for fluid bilayer. This effect can be explained by the possible presence of multiple bonds due to ligand accumulation on the contact area

    Control of ligand-receptor interaction by tuning molecular environment

    No full text
    L'adhésion cellulaire est un processus biologique fondamental contrôlé par des liaisons moléculaires spécifiques entre ligands et récepteurs attachés à des surfaces. La formation et la rupture de ces liens dépendent de facteurs cinétiques, mécaniques et structurelles. Le but de ce travail était d'observer comment l'interaction ICAM-1 - anti ICAM-1 pouvait être modifié en jouant i) sur la multivalence de molécules impliquées dans la liaison ii) sur la topographie de surface et iii) sur la mobilité des ligands. A cette fin, on a principalement utilisé une chambre à flux laminaire, complété par une détection de molécule unique par fluorescence.L'étude sur les effets de multivalence, utilisant des monomères et dimères d'ICAM-1, a été réalisée en absence et en présence d'une force mécanique, montrant la plus grande stabilité des liaisons divalentes. En outre, un renforcement avec la force et le temps a été trouvé et décrit avec une fonction à deux paramètres, montrant, pour les liaisons divalentes, un comportement intermédiaire entre rupture parallèles et successives des liaisons. La fréquence d'adhésion des liaisons monovalentes et bivalentes présente différentes valeurs causées par la différence de longueur de ces molécules.Les expériences d'adhésions ont été effectuées en variant la topographie du substrat pour les molécules étudiées. Une comparaison des cinétiques de liaisons sur ces surfaces ne montrent pas de différences soit dans la formation ou dans la rupture. Pour interpréter ces résultats, un modèle qui prend en compte la zone de contact réel devrait être construit à partir des images AFM des échantillons.Dans l'écoulement, le temps de contact entre les molécules est contrôlé par la convection de microsphères. Des résultats récents montrent qu'un minimum de temps est requis pour former la liaison (Robert et al. 2011). Pour tester cette prédiction, les ligands sont ancrés à une bicouche lipidique (SLB) pour étudier comment la diffusion peut modifier l'adhésion. Expérimentalement, les fréquences d'adhésion des liaisons ont montré un comportement similaire pour les SLB fixes et fluides. Toutefois, la simulation numérique prédit un effet sur la formation de la liaison, même lorsque la diffusion des ligands est faible. Il semblerait que la diffusion joue un rôle dans la dissociation de la liaison, réduisant fortement la valeur de koff pour une bicouche fluide. Cet effet peut être expliqué par la présence éventuelle de liaisons multiples dues à l'accumulation des ligands sur la surface de contact.Cell adhesion is a fundamental biological process mediated by specific molecular bonds formed by ligands and receptors attached to surfaces. Formation and rupture of these bonds depend on kinetic, mechanical and structural factors. The goal of this work was to observe how the ICAM-1 – anti ICAM-1 interaction can be modified by playing i) on the multivalency of molecules involved in the bond ii) on the topography of surface and iii) on the mobility of ligands. The main technique used for this purpose was the laminar flow chamber, completed by single-particle tracking in fluorescence.The study on multivalency effects, using monomeric and dimeric ICAM-1, was performed in absence and presence of mechanical force, showing the higher stability of divalent bonds. Also, a force- and time- strengthening dependence was found and described with a two-parameter function, showing, for divalent bonds, an intermediate behaviour between parallel and subsequent rupture of bonds. The adhesion frequency of monovalent and divalent bonds exhibit different values accounted by difference in length of these molecules.Adhesion experiments were performed varying the topography of the substrate for the investigated molecules. A comparison of bond kinetics on these surfaces did not show differences either in attachment or in rupture. To interpret these results, a model which takes into account the real contact area should be built from the AFM images of the samples.In the flow, the contact time between molecules is controlled by convection of microspheres. Recent results show that there is a minimal time required to form the bond (Robert et al. 2011). To test this prediction, ligands were anchored to supported lipid bilayer (SLB) to investigate how the diffusion can modify the adhesion. Experimentally, the adhesion frequencies of the bonds showed similar behaviour for fixed and fluid SLB. While, numerical simulation predicted an effect on bond formation even at low ligand diffusion. The diffusion seemed to play a role in bond dissociation, strongly reducing the value of koff for fluid bilayer. This effect can be explained by the possible presence of multiple bonds due to ligand accumulation on the contact area

    Control of ligand-receptor interaction by tuning the molecular environment

    No full text
    Cell adhesion is a fundamental biological process mediated by specific molecular bonds formed by ligands and receptors attached to surfaces. Formation and rupture of these bonds depend on kinetic, mechanical and structural factors. The goal of this work was to observe how the ICAM-1 (Inter-Cellular Adhesion Molecule 1) - anti ICAM-1 interaction can be modified by modification in i) the multivalency of the molecules involved in the bond ii) the topography of the surface and iii) on the mobility of the ligands. The main technique used for this purpose was the laminar flow chamber, complemented by single-particle tracking in fluorescence. The study on multivalency effects, using monomeric and dimeric ICAM-1, was performed in the absence or the presence of mechanical force, revealing the higher stability of divalent bonds. Also, a force- and time- strengthening dependence was found and described with a two-parameter function, showing, for divalent bonds, an intermediate behaviour between parallel and successive rupture of monovalent bonds. The adhesion frequency of monovalent and divalent bonds exhibit different values accounted for by the difference in length of these molecules. Adhesion experiments were performed varying the topography of the substrate at the nanoscale for the investigated molecules. A comparison of bond kinetics on these surfaces did not show differences either in attachment or in rupture. In the flow, the contact time between molecules is controlled by convection of microspheres. Recent results show that there is a minimal time required to form the bond (Robert et al. 2011). To test this prediction, ligands were anchored to supported lipid bilayer (SLB) to investigate how the diffusion can modify the adhesion. Experimentally, the adhesion frequencies of the bonds showed similar behaviour for fixed and fluid SLB. However, 2D numerical simulation predicted an effect on bond formation even at low ligand diffusion. The diffusion seemed to play a role in bond dissociation, strongly limiting the dissociation on the fluid bilayer. This effect can be explained by the possible presence of multiple bonds due to ligand accumulation at the contact area. Laminar flow chamber and single-particle tracking allowed us to better understand the mechanisms of adhesion and the behaviour of interacting ICAM-1 molecules at single molecule level, when the molecular environment was modified. Similar work can be performed on other adhesion molecules in order to gain a wider knowledge of the adhesion mechanisms, or on TCR - pMHC bonds which are extremely important in immune response.L'adhésion cellulaire est un processus biologique fondamental contrôlé par des liaisons moléculaires spécifiques entre ligands et récepteurs attachés à des surfaces. La formation et la rupture de ces liens dépendent de facteurs cinétiques, mécaniques et structurels. Le but de ce travail était d'observer comment l'interaction ICAM-1 (Inter- Cellular Adhesion Molecule 1) - anti ICAM-1 pouvait être modifiée en jouant i) sur la multivalence de molécules impliquées dans la liaison ii) sur la topographie de surface et iii) sur la mobilité des ligands. A cette fin, on a principalement utilisé une chambre à flux laminaire, complété par une détection de molécule unique par fluorescence. L'étude sur les effets de multivalence, utilisant des monomères et dimères d'ICAM-1, a été réalisée en absence ou en présence d'une force mécanique, montrant la plus grande stabilité des liaisons divalentes. En outre, un renforcement avec la force et le temps a été trouvé et décrit avec une fonction à deux paramètres, montrant, pour les liaisons divalentes, un comportement intermédiaire entre rupture parallèles et successives des liaisons monovalentes. La fréquence d'adhésion des liaisons monovalentes et divalentes présente différentes valeurs causées par la différence de longueur de ces molécules. Les expériences d'adhésion ont été effectuées en variant la topographie du substrat à l'échelle nanométrique pour les molécules étudiées. Une comparaison des cinétiques de liaisons sur ces surfaces ne montrent pas de différences soit dans la formation ou dans la rupture. Dans l'écoulement, le temps de contact entre les molécules est contrôlé par la convection de microsphères. Des résultats récents montrent qu'un temps minimum est requis pour former la liaison (Robert et al. 2011). Pour tester cette prédiction, les ligands sont ancrés à une bicouche lipidique (SLB) pour étudier comment la diffusion peut modifier l'adhésion. Expérimentalement, les fréquences d'adhésion des liaisons ont montré un comportement similaire pour les SLB fixes et fluides. Toutefois, une simulation numérique 2D prédit un effet sur la formation de la liaison, même lorsque la diffusion des ligands est faible. Il semblerait que la diffusion joue un rôle dans la dissociation de la liaison, limitant fortement la dissociation de la bicouche fluide. Cet effet peut être expliqué par la présence éventuelle de liaisons multiples dues à l'accumulation des ligands sur la surface de contact. La chambre à flux laminaire et le suivi de particule individuelle a permis de mieux comprendre les mécanismes d'adhésion et le comportement de l'interaction des molécules d'ICAM-1 au niveau de molécule individuelle, lorsque l'environnement moléculaire a été modifiée. Des travaux similaires peuvent être effectuées sur d'autres molécules d'adhésion afin d'atteindre une connaissance beaucoup plus large des mécanismes d'adhésion, ou sur les liaisons entre TCR et pMHC qui sont extrêmement importantes dans la réponse immunitaire

    Control of ligand-receptor interaction by tuning molecular environment

    No full text
    L'adhésion cellulaire est un processus biologique fondamental contrôlé par des liaisons moléculaires spécifiques entre ligands et récepteurs attachés à des surfaces. La formation et la rupture de ces liens dépendent de facteurs cinétiques, mécaniques et structurelles. Le but de ce travail était d'observer comment l'interaction ICAM-1 - anti ICAM-1 pouvait être modifié en jouant i) sur la multivalence de molécules impliquées dans la liaison ii) sur la topographie de surface et iii) sur la mobilité des ligands. A cette fin, on a principalement utilisé une chambre à flux laminaire, complété par une détection de molécule unique par fluorescence.L'étude sur les effets de multivalence, utilisant des monomères et dimères d'ICAM-1, a été réalisée en absence et en présence d'une force mécanique, montrant la plus grande stabilité des liaisons divalentes. En outre, un renforcement avec la force et le temps a été trouvé et décrit avec une fonction à deux paramètres, montrant, pour les liaisons divalentes, un comportement intermédiaire entre rupture parallèles et successives des liaisons. La fréquence d'adhésion des liaisons monovalentes et bivalentes présente différentes valeurs causées par la différence de longueur de ces molécules.Les expériences d'adhésions ont été effectuées en variant la topographie du substrat pour les molécules étudiées. Une comparaison des cinétiques de liaisons sur ces surfaces ne montrent pas de différences soit dans la formation ou dans la rupture. Pour interpréter ces résultats, un modèle qui prend en compte la zone de contact réel devrait être construit à partir des images AFM des échantillons.Dans l'écoulement, le temps de contact entre les molécules est contrôlé par la convection de microsphères. Des résultats récents montrent qu'un minimum de temps est requis pour former la liaison (Robert et al. 2011). Pour tester cette prédiction, les ligands sont ancrés à une bicouche lipidique (SLB) pour étudier comment la diffusion peut modifier l'adhésion. Expérimentalement, les fréquences d'adhésion des liaisons ont montré un comportement similaire pour les SLB fixes et fluides. Toutefois, la simulation numérique prédit un effet sur la formation de la liaison, même lorsque la diffusion des ligands est faible. Il semblerait que la diffusion joue un rôle dans la dissociation de la liaison, réduisant fortement la valeur de koff pour une bicouche fluide. Cet effet peut être expliqué par la présence éventuelle de liaisons multiples dues à l'accumulation des ligands sur la surface de contact.Cell adhesion is a fundamental biological process mediated by specific molecular bonds formed by ligands and receptors attached to surfaces. Formation and rupture of these bonds depend on kinetic, mechanical and structural factors. The goal of this work was to observe how the ICAM-1 anti ICAM-1 interaction can be modified by playing i) on the multivalency of molecules involved in the bond ii) on the topography of surface and iii) on the mobility of ligands. The main technique used for this purpose was the laminar flow chamber, completed by single-particle tracking in fluorescence.The study on multivalency effects, using monomeric and dimeric ICAM-1, was performed in absence and presence of mechanical force, showing the higher stability of divalent bonds. Also, a force- and time- strengthening dependence was found and described with a two-parameter function, showing, for divalent bonds, an intermediate behaviour between parallel and subsequent rupture of bonds. The adhesion frequency of monovalent and divalent bonds exhibit different values accounted by difference in length of these molecules.Adhesion experiments were performed varying the topography of the substrate for the investigated molecules. A comparison of bond kinetics on these surfaces did not show differences either in attachment or in rupture. To interpret these results, a model which takes into account the real contact area should be built from the AFM images of the samples.In the flow, the contact time between molecules is controlled by convection of microspheres. Recent results show that there is a minimal time required to form the bond (Robert et al. 2011). To test this prediction, ligands were anchored to supported lipid bilayer (SLB) to investigate how the diffusion can modify the adhesion. Experimentally, the adhesion frequencies of the bonds showed similar behaviour for fixed and fluid SLB. While, numerical simulation predicted an effect on bond formation even at low ligand diffusion. The diffusion seemed to play a role in bond dissociation, strongly reducing the value of koff for fluid bilayer. This effect can be explained by the possible presence of multiple bonds due to ligand accumulation on the contact area.AIX-MARSEILLE2-Bib.electronique (130559901) / SudocSudocFranceF

    Quantitative modeling assesses the contribution of bond strengthening, rebinding and force sharing to the avidity of biomolecule interactions.

    Get PDF
    Cell adhesion is mediated by numerous membrane receptors. It is desirable to derive the outcome of a cell-surface encounter from the molecular properties of interacting receptors and ligands. However, conventional parameters such as affinity or kinetic constants are often insufficient to account for receptor efficiency. Avidity is a qualitative concept frequently used to describe biomolecule interactions: this includes incompletely defined properties such as the capacity to form multivalent attachments. The aim of this study is to produce a working description of monovalent attachments formed by a model system, then to measure and interpret the behavior of divalent attachments under force. We investigated attachments between antibody-coated microspheres and surfaces coated with sparse monomeric or dimeric ligands. When bonds were subjected to a pulling force, they exhibited both a force-dependent dissociation consistent with Bell's empirical formula and a force- and time-dependent strengthening well described by a single parameter. Divalent attachments were stronger and less dependent on forces than monovalent ones. The proportion of divalent attachments resisting a force of 30 piconewtons for at least 5 s was 3.7 fold higher than that of monovalent attachments. Quantitative modeling showed that this required rebinding, i.e. additional bond formation between surfaces linked by divalent receptors forming only one bond. Further, experimental data were compatible with but did not require stress sharing between bonds within divalent attachments. Thus many ligand-receptor interactions do not behave as single-step reactions in the millisecond to second timescale. Rather, they exhibit progressive stabilization. This explains the high efficiency of multimerized or clustered receptors even when bonds are only subjected to moderate forces. Our approach provides a quantitative way of relating binding avidity to measurable parameters including bond maturation, rebinding and force sharing, provided these parameters have been determined. Also, this provides a quantitative description of the phenomenon of bond strengthening

    A case of figurate urticaria by etanercept

    Get PDF
    Etanercept is a competitive inhibitor of tumor necrosis factor-alpha (TNF-α) a polypeptide hormone, involved in the development of the immune system, in host defense and immune surveillance. Even if the etanercept mechanism of action is not completely understood, it is supposed that it negatively modulates biological responses mediated by molecules (cytokines, adhesion molecules, or proteinases) induced or regulated by TNF. For this reason, it is widely used in the treatment of immunologicals diseases, such as rheumatoid and psoriatic arthritis, polyarticular juvenile idiopathic active, ankylosing spondylitis, and plaque psoriasis. Etanercept has a good tolerability profile. Adverse events related to skin are rare, arising usually in about 5% of patients treated with anti-TNF α. In this scenario, we describe a case of figurate urticaria arose after the re-administration of etanercept in a patient affected by psoriasis and hepatitis B. A 65-year-old man, affected by psoriasis, was hospitalized in September 2014 to the Regional Center for the treatment of psoriasis and Biological Drugs of Second University of Naples for progressive extension of psoriatic skin lesions. The laboratory analysis detected positivity for hepatitis B virus (HBV) antigens. For this reason, it was administered to him lamivudine 100 mg/die about 30 days before to start etanercept treatment. The etanercept therapy has resulted in a progressive improving of skin manifestations, and the patient decided individually to stop the therapy. Afterwards, for worsening of the psoriatic lesions, he was again hospitalized and treated with the same therapeutic schedule (lamivudine followed by etanercept). Ten days after the start of therapy, the patient showed the onset of urticarial rash. Due to this, the treatment with lamivudine and etanercept was suspended and the patient′s clinical conditions improved. It is probably that immunological disorders due to etanercept therapy and HBV infection could explain the onset of figurate urticaria in our patient. In this contest, the post-marketing surveillance confirms its important role in the monitoring of drugs tolerability and effectiveness
    corecore