13 research outputs found

    Two ice-core delta O-18 records from Svalbard illustrating climate and sea-ice variability over the last 400 years

    Get PDF
    Ice cores from the relatively low-lying ice caps in Svalbard have not been widely exploited in climatic studies owing to uncertainties about the effect of meltwater percolation. However, results from two new Svalbard ice cores, at Lomonosovfonna and Austfonna, have shown that with careful site selection, high-resolution sampling and multiple chemical analyses it is possible to recover ice cores from which part of the annual signals are preserved, despite the considerable meltwater percolation. The new Svalbard ice cores are positioned in different parts of Svalbard and cover the past 800 years. In this paper we focus on the last 400 years. The delta(18)O signals from the cores are qualitatively similar over most of the twentieth century, suggesting that they record the same atmospheric signal. Prior to AD 1920, the Austfonna ice core exhibits more negative delta(18)O values than Lomonosovfonna, although there are intermittent decadal-scale periods throughout the record with similar values. We suggest that the differences reflect the effect of the inversion layer during the winter. The pattern in the delta(18)O records is similar to the Longyearbyen air-temperature record, but on an annual level the correlation is low. The Austforma record correlates well with the temperature record from the more distant and southwesterly located Jan Mayen. A comparison of the ice-core and sea-ice records from this period suggests that sea-ice extent and Austforma delta(18)O are related over the past 400 years. This may reflect the position of the storm tracks and their direct influence on the relatively low-altitude Austfonna. Lomonosovfonna may be less sensitive to such changes and primarily record free atmospheric changes instead of variations in sea-ice extent, the latter is probably a result of its higher elevation

    Two ice-core d18O records from Svalbard illustrating climate and sea-ice variability over the last 400 years

    Get PDF
    Ice cores from the relatively low-lying ice caps in Svalbard have not been widely exploited in climatic studies owing to uncertainties about the effect of meltwater percolation. However, results from two new Svalbard ice cores, at Lomonosovfonna and Austfonna, have shown that with careful site selection, high-resolution sampling and multiple chemical analyses it is possible to recover ice cores from which part of the annual signals are preserved, despite the considerable meltwater percolation. The new Svalbard ice cores are positioned in different parts of Svalbard and cover the past 800 years. In this paper we focus on the last 400 years. The delta(18)O signals from the cores are qualitatively similar over most of the twentieth century, suggesting that they record the same atmospheric signal. Prior to AD 1920, the Austfonna ice core exhibits more negative delta(18)O values than Lomonosovfonna, although there are intermittent decadal-scale periods throughout the record with similar values. We suggest that the differences reflect the effect of the inversion layer during the winter. The pattern in the delta(18)O records is similar to the Longyearbyen air-temperature record, but on an annual level the correlation is low. The Austforma record correlates well with the temperature record from the more distant and southwesterly located Jan Mayen. A comparison of the ice-core and sea-ice records from this period suggests that sea-ice extent and Austforma delta(18)O are related over the past 400 years. This may reflect the position of the storm tracks and their direct influence on the relatively low-altitude Austfonna. Lomonosovfonna may be less sensitive to such changes and primarily record free atmospheric changes instead of variations in sea-ice extent, the latter is probably a result of its higher elevation

    Ice cores from Arctic sub-polar glaciers: chronology and post-depositional processes deduced from radioactivity measurements

    Get PDF
    The response of Arctic ice masses to climate change is studied using ice cores containing information on past climatic and environmental features. Interpretation of this information requires accurate chronological data. Absolute dating of ice cores from sub-polar Arctic glaciers is possible using well-known radioactive layers deposited by atmospheric nuclear tests (maximum fallout in 1963) and the Chernobyl accident (1986). Analysis of several isotopes (H-3, Cs-137) shows that H-3 provides the most accurate dating of the 1963 maximum as indicated also in comparison with results from total-beta measurements (Sr-90 and Cs-137). Mean annual net mass balances are derived from the dated ice cores from 1963 up to the date of the drillings. The Cs-137 and H-3 deposited by nuclear tests, after decay correction, are used to define a melt index for all 13 ice cores studied. The relative strength of melting and percolation post-depositional processes is studied on the basis of these Cs-137 and H-3 deposits

    Holocene hydrological cycle changes in the Southern Hemisphere documented in East Antarctic deuterium excess records

    No full text
    International audienceFour Holocene-long East Antarctic deuterium excess records are used to study past changes of the hydrological cycle in the Southern Hemisphere. We combine simple and complex isotopic models to quantify the relationships between Antarctic deuterium excess fluctuations and the sea surface temperature (SST) integrated over the moisture source areas for Antarctic snow. The common deuterium excess increasing trend during the first half of the Holocene is therefore interpreted in terms of a warming of the average ocean moisture source regions over this time. Available Southern Hemisphere SST records exhibit opposite trends at low latitudes (warming) and at high latitudes (cooling) during the Holocene. The agreement between the Antarctic deuterium excess and low-latitude SST trends supports the idea that the tropics dominate in providing moisture for Antarctic precipitation. The opposite trends in SSTs at low and high latitudes can potentially be explained by the decreasing obliquity during the Holocene inducing opposite trends in the local mean annual insolation between low and high latitudes. It also implies an increased latitudinal insolation gradient that in turn can maintain a stronger atmospheric circulation transporting more tropical moisture to Antarctica. This mechanism is supported by results from a mid-Holocene climate simulation performed using a coupled ocean-atmosphere model

    Reconstruction of three centuries of annual accumulation rates based on the record of stable isotopes of water from Lomonosovfonna, Svalbard

    Get PDF
    We use the upper 81 in of the record of stable isotopes of water from a 122 in long ice core from Lomonosovfonna, central Spitsbergen, Svalbard, to construct an ice-core chronology and the annual accumulation rates over the icefield. The isotope cycles are counted in the ice-core record using a model that neglects short-wavelength and low-amplitude cycles. We find approximately the same number of delta(18)O cycles as years between known reference horizons, and assume these cycles represent annual cycles. Testing the validity of this assumption using cycles in deltaD shows that both records give similar numbers of cycles. Using the delta(18)O chronology, and decompressing the accumulation records using the Nye flow model, we calculate the annual accumulation for the ice-core site back to AD 1715. We find that the average accumulation rate from 1715 to 1950 was on average 0.30 in w.e. Accumulation rates increased about 25% during the later part of the 20th century to an average of 0.41 in w.e. for the period 1950-97. The accumulation rates show highly significant 2.1 and 21 year periodicities, which gives credibility to our time-scale
    corecore