219 research outputs found

    Dilation Angle and Liquefaction Potential

    Get PDF
    Most of our understandin9 of the liquefaction phenomenon has come from laboratory tests. It would be desirable to express liquefaction resistance in terms of a parameter which can be measured both in the laboratory and in the field. It is proposed that the dilation angle or expansion rate of the sand is such a parameter. It is readily measured in the laboratory from drained simple shear or triaxial tests and in the field from self boring pressuremeter tests. Based on laboratory tests on Ottawa sand a chart is presented for estimating the liquefaction resistance of saturated sands in terms of dilation angle in addition to the usual parameters relative density and blow count. When the chart was used in conjunction with pressuremeter tests, a conservative estimate of liquefaction resistance of a hydraulic fill dam was obtained

    FoxQ1 Overexpression Influences Poor Prognosis in Non-Small Cell Lung Cancer, Associates with the Phenomenon of EMT

    Get PDF
    BACKGROUND: We determined the expression of forkhead box Q1 (FoxQ1), E-cadherin (E-cad), Mucin 1 (MUC1), vimentin (VIM) and S100 calcium binding protein A4 (S100A4), all epithelial-mesenchymal transition (EMT) indicator proteins in non-small cell lung cancer (NSCLC) tissue samples. We also investigated the relationship between these five proteins expression and other clinicopathologic factors in NSCLC. Finally, we assessed the potential value of these markers as prognostic indicators of survival in NSCLC's patients. METHODS: Quantitative real-time PCR and immunohistochemistry were used to characterize the expression of the FoxQ1 mRNA and protein in NSCLC. Expression of transcripts and translated products for the other four EMT indicator proteins was assessed by immunohistochemistry in the same clinical NSCLC samples. RESULTS: FoxQ1 mRNA and protein were up-regulated in NSCLC compared with normal tissues (P = 0.015 and P<0.001, respectively). Expression of FoxQ1 in adenocarcinoma was higher than in squamous cell carcinoma (P = 0.005), and high expression of FoxQ1 correlated with loss of E-cad expression (P = 0.012), and anomalous positivity of VIM (P = 0.024) and S100A4 (P = 0.004). Additional survival analysis showed that high expression of FoxQ1 (P = 0.047) and E-cad (P = 0.021) were independent prognostic factors. CONCLUSION: FoxQ1 maybe plays a specific role in the EMT of NSCLC, and could be used as a prognostic factor for NSCLC

    A laboratory study of anisotropic geomaterials incorporating recent micromechanical understanding

    Get PDF
    This paper presents an experimental investigation revisiting the anisotropic stress–strain–strength behaviour of geomaterials in drained monotonic shear using hollow cylinder apparatus. The test programme has been designed to cover the effect of material anisotropy, preshearing, material density and intermediate principal stress on the behaviour of Leighton Buzzard sand. Experiments have also been performed on glass beads to understand the effect of particle shape. This paper explains phenomenological observations based on recently acquired understanding in micromechanics, with attention focused on strength anisotropy and deformation non-coaxiality, i.e. non-coincidence between the principal stress direction and the principal strain rate direction. The test results demonstrate that the effects of initial anisotropy produced during sample preparation are significant. The stress–strain–strength behaviour of the specimen shows strong dependence on the principal stress direction. Preloading history, material density and particle shape are also found to be influential. In particular, it was found that non-coaxiality is more significant in presheared specimens. The observations on the strength anisotropy and deformation non-coaxiality were explained based on the stress–force–fabric relationship. It was observed that intermediate principal stress parameter b(b = (σ2 − σ3)/(σ1 − σ3)) has a significant effect on the non-coaxiality of sand. The lower the b-value, the higher the degree of non-coaxiality is induced. Visual inspection of shear band formed at the end of HCA testing has also been presented. The inclinations of the shear bands at different loading directions can be predicted well by taking account of the relative direction of the mobilized planes to the bedding plane

    A comparative study of different model families for the constitutive simulation of viscous clays

    Get PDF
    The simulation of the viscous behavior of some clays is of high importance in many geotechnical problems. The literature offers a vast amount of constitutive models able to simulate the rate dependence observed on these materials. Although most of thesemodels are calibrated to very similar experimental observations and share similar definitions ofmaterial parameters, some discrepancies of their response have been detected, which are related to their mathematical formulations. In this work, the causes of these discrepancies are carefully studied. To that end, four different model families are analyzed, namely, nonstationary flow surface (NSFS) models, viscoplasticity with overstress function (OVP), viscoplasticity with Norton\u27s power law (NVP), and visco-hypoplasticity (VHP). For the sake of a fair comparison, single constitutive models using the same set of material parameters, and following other requirements, are developed for each model family. Numerical implementations of the four resulting models are performed. Their response at different tests are carefully analyzed through simulation examples and direct examination of their constitutive equations. The set includes some basic tests at isotropic stress states and others as responses envelopes, undrained creep rupture, and an oedometer test with loading, unloading-reloading, creep, and relaxation. The article is concluded with some remarks about the observed discrepancies of these model families

    Apparent and average acceleration of the Universe

    Get PDF
    In this paper we consider the relation between the volume deceleration parameter obtained within the Buchert averaging scheme and the deceleration parameter derived from the supernova observation. This work was motivated by recent findings that showed that there are models which despite Λ=0\Lambda=0 have volume deceleration parameter qvol<0q^{vol} < 0. This opens the possibility that backreaction and averaging effects may be used as an interesting alternative explanation to the dark energy phenomenon. We have calculated qvolq^{vol} in some Lema\^itre--Tolman models. For those models which are chosen to be realistic and which fit the supernova data, we find that qvol>0q^{vol} > 0, while those models which we have been able to find which exhibit qvol<0q^{vol} < 0 turn out to be unrealistic. This indicates that care must be exercised in relating the deceleration parameter to observations.Comment: 15 pages, 5 figures; matches published versio

    KIFC1-Like Motor Protein Associates with the Cephalopod Manchette and Participates in Sperm Nuclear Morphogenesis in Octopus tankahkeei

    Get PDF
    Nuclear morphogenesis is one of the most fundamental cellular transformations taking place during spermatogenesis. In rodents, a microtubule-based perinuclear structure, the manchette, and a C-terminal kinesin motor KIFC1 are believed to play crucial roles in this process. Spermatogenesis in Octopus tankahkeei is a good model system to explore whether evolution has created a cephalopod prototype of mammalian manchette-based and KIFC1-dependent sperm nuclear shaping machinery.We detected the presence of a KIFC1-like protein in the testis, muscle, and liver of O. tankahkeei by Western Blot. Then we tracked its dynamic localization in spermatic cells at various stages using Immunofluorescence and Immunogold Electron Microscopy. The KIFC1-like protein was not expressed at early stages of spermatogenesis when no significant morphological changes occur, began to be present in early spermatid, localized around and in the nucleus of intermediate and late spermatids where the nucleus was dramatically elongated and compressed, and concentrated at one end of final spermatid. Furthermore, distribution of the motor protein during nuclear elongation and condensation overlapped with that of the cephalopod counterpart of manchette at a significant level.The results support the assumption that the protein is actively involved in sperm nuclear morphogenesis in O. tankahkeei possibly through bridging the manchette-like perinuclear microtubules to the nucleus and assisting in the nucleocytoplasmic trafficking of specific cargoes. This study represents the first description of the role of a motor protein in sperm nuclear shaping in cephalopod

    Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications

    Get PDF
    Superparamagnetic iron oxide nanoparticles can providemultiple benefits for biomedical applications in aqueous environments such asmagnetic separation or magnetic resonance imaging. To increase the colloidal stability and allow subsequent reactions, the introduction of hydrophilic functional groups onto the particles’ surface is essential. During this process, the original coating is exchanged by preferably covalently bonded ligands such as trialkoxysilanes. The duration of the silane exchange reaction, which commonly takes more than 24 h, is an important drawback for this approach. In this paper, we present a novel method, which introduces ultrasonication as an energy source to dramatically accelerate this process, resulting in high-quality waterdispersible nanoparticles around 10 nmin size. To prove the generic character, different functional groups were introduced on the surface including polyethylene glycol chains, carboxylic acid, amine, and thiol groups. Their colloidal stability in various aqueous buffer solutions as well as human plasma and serum was investigated to allow implementation in biomedical and sensing applications.status: publishe
    corecore