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Summary

The simulation of the viscous behavior of some clays is of high importance in
many geotechnical problems. The literature offers a vast amount of constitu-
tive models able to simulate the rate dependence observed on these materials.
Although most of these models are calibrated to very similar experimental obser-
vations and share similar definitions of material parameters, some discrepancies
of their response have been detected, which are related to their mathemati-
cal formulations. In this work, the causes of these discrepancies are carefully
studied. To that end, four different model families are analyzed, namely, non-
stationary flow surface (NSFS) models, viscoplasticity with overstress function
(OVP), viscoplasticity with Norton's power law (NVP), and visco-hypoplasticity
(VHP). For the sake of a fair comparison, single constitutive models using
the same set of material parameters, and following other requirements, are
developed for each model family. Numerical implementations of the four result-
ing models are performed. Their response at different tests are carefully ana-
lyzed through simulation examples and direct examination of their constitutive
equations. The set includes some basic tests at isotropic stress states and others as
responses envelopes, undrained creep rupture, and an oedometer test with load-
ing, unloading-reloading, creep, and relaxation. The article is concluded with
some remarks about the observed discrepancies of these model families.
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1 INTRODUCTION

Most clays show a rate-dependent mechanical behavior as presented in many experimental works.1-11 Experience has
shown that rate dependency influences many geotechnical problems, for example, long-term settlement of structures,12-17

slope creep,18,19 pile shafts penetration,20,21 and ground anchor relaxation.22-26 Clearly, the study of the soil's viscous behav-
ior is of relevant importance. Since the previous pioneer works,27-30 many empirical relations to predict some rate effects
on soils have been proposed in the literature.31-33 The consideration of these relations in the formulation of rate-dependent
constitutive models has allowed users to simulate rate effects on some boundary value problems dealing with
viscous clays.

Many rate-dependent models for clays are actually based on very similar fundamentals: the basis of critical state soil
mechanics,34,35 accounting for the stress and void ratio dependence on stiffness and strength characteristics, and their
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viscous effects capabilities, adjusted to some empirical relations. In addition to this, their mathematical structure follows
mostly from viscoplastic formulations, ie, the irreversible strain rate, and not, for example, the stiffness tensor, is respon-
sible for viscous effects. With the aforementioned similarities, one may believe that two different viscous models whose
formulations are adjusted to identical critical state relations, and to the same empirical relations for viscous effects, should
deliver the same response. This is, however, not true: The literature offers different theoretical approaches to develop
the model formulation, presenting important discrepancies between them, of which users should be aware of. One may
distinguish, for example, viscous models based on nonstationary flow surface (NSFS),36-41 viscoplastic models based on
overstress functions (OVP),13,42-51 others based on potential laws similar to Norton's law (NVP),52-59 and yet recently,
the so-called visco-hypoplasticity (VHP),60 among other formulations.39,61,62 Model developers know that it is possible
to formulate viscous models with identical material parameters but having different formulations. Works showing the
capabilities of single models through predictions of experimental curves are often encountered in the literature.13,60,62-65

Nevertheless, very few works are devoted to compare different formulations of viscous models,66,67 and to the authors'
knowledge, a work showing their differences directly from simulation examples is not found in the literature, probably
because it would demand an exhaustive work for their formulation under the same conditions and for their numerical
implementation.

The present review article aims to show the differences emerging from different model formulations for viscous clays
directly from simulation examples. To that end, four different models will be proposed and implemented according to
the following model families: NSFS, OVP, NVP, and VHP. In order to provide a fair comparison, they will adjusted to the
same empirical relations and calibrated with the same parameters. Most simulations presented herein do not aim to
show the congruence of the models with a particular material but rather to provide simulation examples to analyze their
differences due to their mathematical formulations. The selected set of model parameters follows from well-known mod-
ified Cam clay (MCC) and Buisman-type27 relations. The article is structured as follows: first of all, some overall concepts
often used in viscous constitutive formulations are introduced. Then, the constitutive equation for each model family is
developed. These equations are adjusted to the same set of material parameters. Subsequently, the material parameters
and the numerical implementations are briefly described. Several tests showing rate-effects are then simulated and care-
fully analyzed with the different models. The set of simulations include isotach curves, creep tests, stress relaxation tests,
response envelopes, and undrained creep tests. This analysis is complemented with the simulation of an oedometric test
of a Kaolin clay showing many rate effects. The article is closed with some final remarks.

2 NOTATION AND CONVENTION

The notation and convention of the present work is as follows: Italic fonts denote scalar magnitudes (eg, a, b), bold lower-
case letters denote vectors (eg, a,b), bold capital letters denote second-rank tensors (eg, A, 𝝈), and special fonts are used
for fourth-rank tensors (eg, E,L). Indicial notation can be used to represent components of tensors (eg, Aij), and their
operations follow the Einstein's summation convention. The Kronecker delta symbol is represented by 𝛿ij, ie, 𝛿ij = 1 when
i = j and 𝛿ij = 0 otherwise. The symbol 1 denotes the Kronecker delta tensor (1ij = 𝛿ij). The unit fourth-rank tensor for
symmetric tensors is denoted by I, where Ii𝑗kl = 1

2

(
𝛿ik𝛿𝑗l +𝛿il𝛿𝑗k

)
.

Multiplication with two dummy indices (double contraction) is denoted with a colon “∶” (eg, A ∶ B = AijBij). The
symbol “⊗” represents the dyadic product (eg, A ⊗ B = AijBkl). The brackets ||⨆ || extract the Euclidean norm (eg,||A|| = √

Ai𝑗Ai𝑗). Normalized tensors are denoted by
−→⨆

=
⨆

||⨆ || or in general as ⊔→. The superscript
⨆dev extracts the

deviatoric part of a tensor (eg, Adev = A − 1
3
(trA)1). Components of the effective stress tensor 𝝈 or strain tensor 𝜺 in

compression are negative. Roscoe variables are defined as p = −𝜎ii∕3, q =
√

3
2
||𝛔dev||, 𝜀v = −𝜀ii, and 𝜀s =

√
2
3
||𝜺dev||. The

stress ratio 𝜂 is defined as 𝜂 = q∕p. The deviator stress tensor is defined as 𝝈dev = 𝝈 + p 1 and the stress-ratio tensor with
r = 𝛔dev∕p =

√
2
3
𝜂
−−→
𝛔dev.

3 CHARACTERISTIC ISOTACHS AND OVERCONSOLIDATION RATIO

In classical soil mechanics, isotropic compression yields to a unique e-p curve under normally consolidated states.29

For viscous soils, a shift of this e-p line can be obtained depending on the strain rate velocity. Similar to that of other
authors,7,30,62,68 the term “isotach” is hereafter used to denote a characteristic e-p curve related to a particular volumetric
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strain rate .
𝜀v = const. The e−p space wherein isotachs exist is bounded according to some works. More specifically, some

models consider the existence of a lower boundary at which isotachs of extremely low strain rates .
𝜀v ≈ 0 are bounded,

or equivalently, at which creep paths cease (eg, previous studies43,44). This bounding curve is in this work referred to as
“minimum” isotach. Other works consider a “maximum” isotach as the upper boundary of isotachs with very high strain
rates .

𝜀v ≈ ∞ (eg, previous studies38,39,41). These and other characteristic isotachs are often used for the formulation of
many existing viscoplastic models. They are summarized in the following lines:

Reference isotach: isotach for .
𝜀v = Dr, whereby Dr is a . For the sake of convenience, the reference isotach is usually set

to coincide with an experimental curve. In this work, for the case of the OVP model, the reference
isotach is selected to coincide with the minimum isotach.

Maximum isotach: isotach for the limit value .
𝜀v → ∞. It corresponds to the upper boundary of all possible isotachs in

the e − p space.
Minimum isotach: isotach for the limit value .

𝜀v → 0. It corresponds to the lower boundary of all possible isotachs. It
also bounds creep and relaxation paths under isotropic stress states (q = 0).

OCR=1 isotach: isotach at which the overconsolidation ratio under isotropic states is equal to one, ie, OCR= 1. This
coincides with the definition of the normal consolidation line.

Notice that while the reference isotach is thought to match an experimental curve, the maximum and minimum isotachs
are rather mathematical boundaries in the e − p space. Several relations proposed in the literature are useful for their
formulation, eg, previous studies.34,35,69-72 For instance, consider the MCC relation to describe the characteristic isotachs
denoted collectively by e = ex(p):

e = ex(p) = ex0 − 𝜆 ln(p∕pr), ex0 = {eref0, emax0, emin0, ei0}, (1)

where 𝜆 is the compression index and ex0 = {eref0, emax0, emin0, ei0} corresponds to the characteristic void ratio of the
reference, maximum, minimum, and OCR= 1 isotachs at p = pr = 1 kPa respectively; see Figure 1A.

One may show that the studied models in the present work can be adjusted to a reference isotach for a compression
curve with .

𝜀v = Dr . However, the incorporation of a maximum or a minimum isotach depends on the model type and is
actually not mandatory. Particularly, the NSFS model and the VHP model incorporate only the maximum isotach in their
formulations. This curve has been previously referred to as “instant normal compression line” by Yao et al37 or “maximum
void ratio isotach” by Fuentes et al.60 OVP models incorporate a minimum isotach, referred to as “static yield surface” in
previous studies.13,73,74 The NVP model is the only one incorporating neither the maximum nor the minimum isotach. It
will be shown that many salient discrepancies of their response emerge from the mentioned differences.

The overconsolidation ratio in one dimension is defined as

OCR =
pei

p
with pei = exp

(ei0 − e
𝜆

)
, (2)

whereby pei corresponds to the Hvorslev pressure at the OCR= 1 line, solved from Equation (1). For the sake of generality,
we introduce the ratio Rx, being similar to the OCR, but considering other characteristic isotachs as reference curves at
which Rx = 1:

Rx =
pe,x

p
with pe,x = exp

(ei,x − e
𝜆

)
, x = {ref,max,min}. (3)

Figure 1B illustrates the Hvorslev-type variables pe,x at the characteristic isotachs. The definition of the overconsolida-
tion ratio for three-dimensions, denoted hereafter with OCR3D, has been differently proposed by some works, or actually
omitted in others. Most authors propose a function describing a surface in the stress space at which OCR3D = 1, repre-
sented by the condition FOCR = 0. To keep consistency, this surface intersects the equivalent Hvorslev pressure pei at the
isotropic axis, ie,

FOCR ≡ FOCR(𝛔, pei, …) = 0. (4)

For the sake of simplicity, MCC-type yield surfaces will be used for the formulation of the OCR3D surface of the OVP,
NVP, and NSFS models. The following MCC function FOCR = Fe is adopted for these models:

Fe = ln
(

q2

M2 p2 + 1
)
− ln

(
pei

p

)
, (5)
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FIGURE 1 Parameters and Hvorslev
pressures of characteristic isotachs

FIGURE 2 Surfaces of equal
overconsolidation ratio OCR3D

where M is the critical state slope in the p − q space. To make our analysis simpler, we consider M a constant. However,
it is strongly recommended that a Lode's angle dependence be incorporated as in other works.60 The resulting OCR3D
definition being consistent with Equation (2) and (5) is

OCR3D =
pei

p+ with p+ = p

[
1 +

(
q

pM

)2
]
, (MCC-type), (6)

whereby p+ has been solved from Equation (5) for Fe = 0. An analogous relation is also used for the ratio Rx under
three-dimensional states:

Rx =
pe,x

p+ . (7)

OCR3D functions based on different relations than MCC-type functions have been used in the literature as well. The
VHP model in previous studies60,75 proposed a stress surface for the OCR with the following features: an open-wedge type
surface that intersects the isotropic axis at p = pei and the critical state surface at p = pei∕2. The function proposed by
Fuentes et al60 reads

OCR3D =
pei

p
+
(

1 −
pei

p

)(
q

𝑓bMp

)2

, (VHP − type, by Fuentes et al60), (8)

where M is the critical state slope in the p-q space, and fb is a scalar function defined as

𝑓b = 𝑓b0

(
1 −

(
e
ei

)nF
)1∕2

, nF =
ln

(
(𝑓 2

b0 − 1)∕𝑓 2
b0

)
ln((ei − 𝜆 ln(2))∕ei)

, (9)
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and fb0 is considered a material constant controlling the slope of the surface at p → 0 in the p − q space. Accordingly, a
value of approximately fb0 ≈ 1.1 has been found to reproduce well many experimental observations.60,75 Hence, we set
this value as a constant for the simulations. Figure 2 illustrates the OCR3D stress surfaces for MCC-type functions and the
VHP model by Fuentes et al.60

4 CREEP RATE

Under isotropic stress conditions (q = 0), the creep rate describes the rate of volumetric deformation .
𝜀v upon a constant

stress state .𝛔 = 0. Among many relations proposed in the literature,7,27,28,33 a Buisman-type relation27 is selected for this
work:

𝜀v = 𝜀v,0 − C𝛼 ln
(

t + t0

t0

)
(10)

whereby 𝜀v,0 and t0 are initial values of the void ratio and time, respectively, and C𝛼 is analogous (but not equal) to the
Buisman constant.27 The differential form of Equation (10) is

.
𝜀v = −C𝛼

1
t + t0

= C𝛼

exp((e − e0)∕C𝛼)
t0

. (11)

Considering that creep paths are performed under constant mean pressure .p = 0 while a change on the Hvorslev stress
pei is experienced, the difference 𝜀−𝜀v,0 is then related to 𝜀v−𝜀v,0 = −𝜆 ln(pei∕p) = −𝜆 ln(OCR). One can demonstrate that
substitution of the latter relation in Equation (11), and assuming that creep volumetric strains are produced by viscoplastic
strains .

𝜀vis
v , yields to the following relation:

.
𝜀vis

v = Dr

( 1
OCR

)1∕Iv
, (12)

where Dr = C𝛼∕t0 is a reference creep rate, already introduced in other works (eg, Niemunis55), and Iv is, by some authors,
referred to as the viscosity exponent or also the Leinenkugel index,76 which reads

Iv =
C𝛼

𝜆
. (13)

Note that Dr = C𝛼∕t0 depends on the reference time t0 = 1 s. This suggests that Dr is a referential factor with units of
1∕s. It can be adjusted to a particular isotach, as for example, the reference isotach. The three-dimensional extension for
Equation (12) incorporates the flow rule m, first referenced in Niemunis,55 as follows:

.
𝜺

vis = Dr

( 1
OCR 3D

)1∕Iv
,m (14)

where the norm ||m|| = 1∕
√

3 has been imposed to match the behavior for 1D case in terms of .p and .
𝜀v.

5 DEVELOPMENT OF CONSTITUTIVE EQUATIONS

With the aim of performing a fair comparison, the viscous models are required to account for a set of characteristics,
which are established in the following lines:

1. Isotropic compression under the reference strain rate, ie, .
𝜀v = Dr, yields asymptotically to the reference isotach.

Parameters eref,0, 𝜆, and Dr control this behavior.
2. Isotropic unloading leads to the relation .p = p (1 + e)∕𝜅 .

𝜀v. Parameter 𝜅 must be employed.
3. Models must be able to simulate the critical state condition ( .𝛔 = 0, .

𝜀v = 0, e = ec) at the critical state surface q = Mp.
Parameter M defines this surface, and ec = ei(p) − 𝜆 ln(2) is the critical state void ratio.

4. The shear modulus G is proportional to the Bulk modulus K, through the relation G = 3(1 − 2𝜈) ∕(2(1 + 𝜈))K. The
Poisson ratio 𝜈 is used as parameter for this purpose.

5. Under isotropic stress conditions, a point lying at the reference isotach exhibits a creep rate equal to .
𝜀v =

Dr(1∕OCR)1∕Iv . The viscosity index Iv is introduced as a parameter for this purpose.
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The aforementioned requirements are related to the usage of the set of parameters {eref,0, 𝜆,Dr, 𝜅,M, 𝜈, Iv} in the consti-
tutive formulations. In the following sections, the different formulations are presented considering the aforementioned
requirements.

5.1 NSFS model
NSFS models are based on two main features: the formulation of a time-dependent yield surface responsible for the creep
behavior and the consideration of the maximum isotach as the OCR= 1 isotach, ie,

pei = pe,max, OCR = Rmax. (15)

The model will be based on some MCC relations, as in other NSFS models in some previous studies.77-79 The Hvorslev
pressure pei serves as hardening variable of the yield surface in Equation (5). It presents an isotropic hardening rule as in
conventional MCC theory35 with the following relation:

.pei =
pei

Cp

.
𝜀

vp
v , or pe,max = pei0 exp

(
𝜀

vp
v

Cp

)
,

Cp = 𝜆 − 𝜅

1 + e0
,

pei0 = exp
(ei0 − e0

𝜆

)
,

(16)

whereby e0 is the initial void ratio, pei0 = pe,max0 is the initial Hvorslev pressure at the maximum isotach, ei0 = emax0 is
the void ratio of the maximum isotach at p = pr = 1 kPa, and 𝜀

vp
v is the viscoplastic volumetric strain. An additional term

ft = ft(t) is added in Equation (5) in order to account for the time dependence of the yield surface. Following this, the
time-dependent yield surface function reads

Fe = ln
(

q2

M2 p2 + 1
)
− ln

(
pei

p

)
+ 𝑓t. (17)

Combination of Equations (16) and (17) in conjunction with Equation (15) yields to the following relation:

Fe = ln
(

q2

M2 p2 + 1
)
+ ln

( 1
OCR

)
+

𝜀
vp
v

Cp
+ 𝑓t. (18)

Differentiation of Equation (18) leads to the consistency condition
.
Fe = 0:

.
Fe =

𝜕Fe

𝜕𝛔
∶ .𝛔 +

.
𝜀

vp
v

Cp
+

.
𝑓 t = 0. (19)

In order to find an expression for
.
𝑓 t, the creep condition .𝛔 = 0 is imposed at the consistency condition

.
Fe = 0. By doing

this, the following relation is obtained:
.
𝜀

vp
v = −Cp

.
𝑓 t (for .𝛔 = 0). (20)

Substitution of Equations (12) and (13) in Equation (20) gives

.
𝑓 t = −

.
𝜀

vp
v

Cp
= C𝛼𝜆

Cp t0

( 1
OCR

)1∕Iv
. (21)

The integrable form of the latter equation is 𝑓t = ∫
.
𝑓 tdt = −𝜀vp

v ∕Cp. According to the Kuhn-Tucker conditions, the
model is elastic for Fe < 0 and elasto-viscoplastic for Fe = 0, ie,

.𝛔 = E ∶ .
𝜺 for Fe < 0,

.𝛔 = E ∶
( .
𝜺 − .

𝜺
vp) for Fe = 0,

(22)
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where .
𝜺

vp is the viscoplastic strain rate tensor and E denotes the (hypo-)elastic (fourth rank) tensor, which reads

E = K11 + 2G(I − 11∕3), (23)

where 1 is the Kronecker delta tensor, K is the Bulk modulus, and G is the shear modulus, both having MCC relations

K =
p (1 + e)

𝜅
, G = 3(1 − 2𝜈)

2(1 + 𝜈)
K. (24)

The viscoplastic strain rate tensor .
𝜺

vp follows from conventional plasticity relations:

.
𝜺

vp =
.
𝜆

vp
,m (25)

whereby
.
𝜆

vp is the consistency parameter and m is the flow rule. The consistency parameter
.
𝜆

vp is solved from the con-
sistency condition

.
Fe = 0 in conjunction with .

𝜀
vp
v = −1 ∶ .

𝜺
vp. The solution of

.
𝜆

vp can be decomposed according to

.
𝜆

vp =
.
𝜆

pl +
.
𝜆

vis
, (26)

where
.
𝜆

pl and
.
𝜆

vp are the plastic and viscous consistency parameters, respectively, and read

.
𝜆

pl =
𝜕Fe
𝜕𝛔 ∶ E ∶ .

𝜺

𝜕Fe
𝜕𝛔 ∶ E ∶ m − 1 ∶ m∕Cp

and
.
𝜆

vis =
.
𝑓 t

𝜕Fe
𝜕𝛔 ∶ E ∶ m − 1 ∶ m∕Cp

. (27)

This decomposition allows to rewrite the constitutive Equation (22) with the following form:

.𝛔 = E ∶
( .
𝜺 − .

𝜺
pl − .

𝜺
vis) , (28)

where .
𝜺

pl =
.
𝜆

plm and .
𝜺

vis =
.
𝜆

vism, such that .
𝜺

vp = .
𝜺

pl + .
𝜺

vis. For the sake of simplicity, the flow rule is selected to be
associated with the yield surface:

m = 1√
3

[
𝜕Fe

𝜕𝛔

]→
= 1√

3

[
𝜕Fe

𝜕p
𝜕p
𝜕𝛔

+ 𝜕Fe

𝜕q
𝜕q
𝜕𝛔

]→
. (29)

Notice that ||m|| = 1∕
√

1∕3. Similar to that of other authors,80,81 we distinguish between continuum Jacobian, defined
as J = (𝜕 .𝛔)∕(𝜕 .

𝜺), and algorithmic Jacobian, defined as J = (𝜕Δ𝝈)∕(𝜕Δ𝜺). While the first depends on the model formula-
tion, the second depends on its numerical implementation algorithm. One may demonstrate that the continuum Jacobian
J of the NSFS model is similar as in classical elastoplasticity80:

J = E −
(E ∶ 𝜕Fe∕𝜕𝛔)⊗ (𝜕Fe∕𝜕𝛔 ∶ E)
𝜕Fe∕𝜕𝛔 ∶ E ∶ 𝜕Fe∕𝜕𝛔 + H

, (30)

where H is the hardening modulus and reads

H = 𝜕Fe

𝜕𝜺
vp
v

· 𝜕Fe

𝜕p
= 1 ∶ m∕Cp. (31)

As an additional remark, notice that this model is able to simulate an inviscid clay by setting Iv = 0 because
.
𝜆

vis = 0;
see Equation (27). For that case, the normal consolidation line would coincide with the maximum isotach.

5.2 OVP model
According to the OVP, the total strain rate .

𝜺 splits into an elastic component .
𝜺

e and a viscoplastic component .
𝜺

vp,78,82-85

that is,
.
𝜺 = .

𝜺
e + .

𝜺
vp (32)
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Then, the general constitutive equation reads:

.𝛔 = E ∶
( .
𝜺 − .

𝜺
vp) . (33)

The formulation of the (hypo-)elastic stiffness E follows from MCC relations and is identical to Equations (23) and (24).
The following lines are now devoted to deduce the viscoplastic strain rate .

𝜺
vp. Assume that the OCR = 1 isotach coincides

with the minimum isotach, ie, OCR= Rmin and ei0 = emin0. Considering this assumption, the yield surface function under
isotropic states (q = 0) reads

Fe ≡ ln(p∕pe,min) = 0 for q = 0. (34)

We now demonstrate that the function exp (Fe∕Iv − 1) is proportional to the viscoplastic strain rate .
𝜀

vp
v ∼ (1∕OCR)1∕Iv

under isotropic stress states (q = 0); see Equation (12). Evaluation of function exp (Fe∕Iv − 1) yields to the following
relation:

exp
(

Fe

Iv
− 1

)
= exp

(
1
Iv

ln
(

p
pe,min

)
− 1

)
= 0 (35)

= exp

(
ln

(
p

pe,min

)1∕Iv

− 1

)
= 0. (36)

For typical values of 1∕Iv > 10, one may show that when p > pe,min, the approximation ln (p∕pe,min)1∕Iv − 1 ≈
ln (p∕pe,min)1∕Iv holds. Using the mentioned approximation in Equation (35), in conjunction with OCR=Rmin, gives

= exp

(
ln

(
p

pe,min

)1∕Iv

− 1

)
≈ exp

(
ln

(
p

pe,min

)1∕Iv
)

(37)

=
( 1

OCR

)1∕Iv
. (38)

The last equation proves that exp (Fe∕Iv − 1) ∼ (1∕OCR)1∕Iv . In light of this demonstration, OVP models adopt the
following relation for .

𝜺
vp:

.
𝜺

vp = 𝜙 m = Dr ⟨exp
(

1
Iv

Fe

)
− 1⟩, m (39)

where Dr is a parameter described in Section 4 and 𝜙 is often referred to as the “functional of overstress”44 or the “viscous
nucleus”. Once more, an associated flow rule has been adopted and reads

m = 1√
3

[
𝜕𝑓

𝜕𝛔

]→
. (40)

Considering that the viscoplastic strain rate .
𝜺

vp does not depend (explicitly) on the strain rate
.

𝜀ilon, the continuum
Jacobian J of the OVP model simplifies to

J = E. (41)

5.3 Visco-plastic model with Norton's power law
Viscoplastic models with Norton's power law are very often used in the literature.7,13,52,55,59,62,86 The main difference of
their formulation with respect to the others is the fact that they do not incorporate any boundary isotach. Its formulation
is very simple and is explained in the following lines.

The general constitutive equation reads
.𝛔 = E ∶

( .
𝜺 − .

𝜺
vp) , (42)

whereby E follows the MCC relations according to Equations (23) and (24). The viscoplastic strain rate 𝜺
vp is proposed to

be proportional to the Norton's power law, yet demonstrated in Equation (14) :

.
𝜺

vp = Dr

( 1
OCR 3D

)1∕Iv
m (43)
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The overconsolidation ratio is determined through the relation given in Equation (6). Note that for highly overconsoli-
dated states OCR≫ 1, the viscoplastic strain rate is negligible .

𝜺
vp ≈ 0, and the model becomes practically (hypo-)elastic.

Once more, an associated flow rule m is adopted:

m = 1√
3

[
𝜕𝑓

𝜕𝛔

]→
. (44)

Similar to the OVP model, the continuous modulus is equal to the elastic stiffness tensor, ie, J = E.

5.4 VHP model
VHP models assume a strain rate decomposition into three strain rate components as follows:

.
𝜺 = .

𝜺
e + .

𝜺
hp + .

𝜺
vis, (45)

whereby .
𝜺

e is the elastic strain rate, .
𝜺

hp is the hypoplastic strain rate, and .
𝜺

vis is the viscous strain rate. In contrast to other
formulations, these three components are always active and are not subjected to any yield constraint. Accordingly, the
constitutive equation reads

.𝛔 = E ∶
( .
𝜺 − .

𝜺
hp − .

𝜺
vis) , (46)

= E ∶
( .
𝜺 − .

𝜺
hp) + .𝛔vis,

whereby .𝛔vis = −E ∶ .
𝜺

vis is the viscous stress rate and E is the (hypo-)elastic stiffness, defined as

E = 3K11 + 2G (I − 11∕3) − K√
3 M

(1r + r1) . (47)

The factors K and G are the bulk and shear modulus, and r = 𝝈
∗∕p is the stress ratio. The bulk modulus K and shear

modulus G are the same presented by Fuentes et al,87 adjusted to match the MCC relations:

K =
p
𝜆

(1 + e)
(1 − Y0m)

with Y0m = (𝜆 − 𝜅)∕(𝜆 + 𝜅), (48)

G = (1 − 2𝜈)
2(1 + 𝜈)

K. (49)

The strain rate components .
𝜺

hp and .
𝜺

vp are defined by the following relations:

.
𝜺

hp = Y|| .
𝜺||m (50)

.
𝜺

vis = Iv𝜆

t0

(
1

OCR3D

)1∕Iv

m (51)

with Y being a scalar function termed the degree of nonlinearity,55 and the overconsolidation ratio OCR3D according to
Equation (8). The degree of nonlinearity Y reads

Y = Y0 + (1 − Y0)
( ||r||||rc||

)2

, Y0 = Y0m

(
p

pe,max

)2

. (52)

where rc =
√

2∕3Mc
−→r . One may notice that the maximum isotach with OCR= Rmax and therefore ei0 = emax0 is

implemented.
Finally, the visco-hypoplastic flow rule m reads

m = 1√
3

[
−1

2
(||rc|| − ||r||)1 + r||rc

||]→. (53)
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Notice that one may simplify the constitutive model to different formulations according to the problem of interest.
For example, for models specializing on monotonic loading without viscous effects, one may use the assumption Iv = 0,
which reduces the above model to a hypoplastic model for inviscid clay. The continuous modulus J is computed similar
to conventional hypoplastic models:

J = E − Y (E ∶ m)⊗ .⃗
𝜺. (54)

6 ADJUSTMENT TO A UNIQUE REFERENCE ISOTACH

One of the requirements of the present study is that all models are adjusted with identical reference isotach. Let the
reference isotach be the curve described by the equation

e = eref0 − 𝜆 ln(p∕pr). (55)

Differentiation of Equation (55) in conjunction with the condition .
𝜀v = Dr leads to the relation

.p =
p (1 + e)

𝜆

.
𝜀v =

p (1 + e)
𝜆

Dr. (56)

Let us now simplify the constitutive equations of the NSFS, OVP, and NVP models, for isotropic stress states q = 0 sub-
jected to a reference strain rate compression .

𝜀v = Dr. According to Equations (22), (33), and (42), the following simplified
forms of these models for q = 0 and .

𝜀v = Dr read

.p = K
(

Dr −
.
𝜀

vp
v
)
=

p (1 + e)
𝜆

Dr (NSFS, OVP, and NVP model). (57)

The particular case of the Visco-hypoplastic model is treated apart considering the nonlinearity of the hypoplastic strain
rate .

𝜺
hp with the strain rate, ie, .

𝜺
hp ∼ || .

𝜺||. Its simplified form under the aforementioned conditions is

.p = K
(

Dr − Y0Dr −
.
𝜀vis

v
)
=

p (1 + e)
𝜆

Dr (VHP model). (58)

Substitution of .
𝜀

vp
v , .

𝜀vis
v , K, and Y0 with their respective definitions (see Section 5) yields to the following relations:

1
𝜅

[
Dr −

Dr∕𝜅 + Iv𝜆 (OCR)2−1∕Iv

1∕𝜅 + (OCR)2∕(𝜆 − 𝜅)

]
= Dr

𝜆
(NSFS model), (59)

1
𝜅

[
Dr

(
1 −

(( 1
OCR

)1∕Iv
− 1

))]
= Dr

𝜆
(OVP model), (60)

1
𝜅

[
Dr

(
1 −

( 1
OCR

)1∕Iv
)]

= Dr

𝜆
(NVP model), (61)

1
1 − Y0m

[
Dr

(
1 − Y0m

( 1
OCR

)2
)
− Iv𝜆

( 1
OCR

)1∕Iv
]
= Dr(VHP model). (62)

The resulting equations depend on the OCR at the reference isotach. Notice that the value of OCR can be directly solved
for the OVP and NVP models, from Equations (60) and (61), respectively, as follows:

OCR =
(

2 − 𝜅

𝜆

)−Iv
(OVP model), (63)

OCR =
(

1 − 𝜅

𝜆

)−Iv
(NVP model). (64)

Hence, the normal consolidation line (OCR = 1) corresponds nearly to the reference isotach for the OVP and the NVP
model. In contrast, simple numerical methods are required for the solution of OCR for the NSFS and VHP models, ie,
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Description Units Approx. Range Req. Test
MCC-type parameters
𝜆 Compression index [-] 10−6 to 1 ICT∗

𝜅 Swelling index [-] 10−7 to 0.1 ICT
eref0 Void ratio at p = 1 kPa (RI∗∗) [-] 0.5 to 10 ICT
M CS slope [-] 0.5 to 1.5 TCT∗∗∗

𝜈 Poisson modulus [-] 0.0 to 0.5 TCT
Viscosity parameters
Iv Viscosity index [-] 0 to 0.1 2× .

𝜀 ICT
Dr Reference strain rate [1/s] 10−12 to 10−3 ICT

Abbreviations: ICT, isotropic compression test; RI, reference isotach; TCT, triaxial compression test.

TABLE 1 Material parameters of
the models

Equations (59) and (62), respectively. Once the OCR is solved, the position of the OCR = 1 isotach of the different models
is adjusted through parameter ei0, which can be solved from the condition

ei0 = eref0 − 𝜆 ln
( 1

OCR

)
. (65)

With this method, all models are adjusted to have the same reference isotach.
Note that the normal consolidation line of the NSFS and the VHP model corresponds to their maximum isotache,

as also depicted respectively in Sections 5.1 and 5.4. Hence, in order to back-fit an experiment result of OCR = 1 line
(corresponding to a strain rate used in the experiment), different models require different reference strain rates, obeying
Equations (59) to (62). Hence, instead of OCR, Equations (59) to (62) can be solved for Dr and then the parameter ei0
corresponds to ei0 = eref.

7 MATERIAL PARAMETERS

The four models were formulated with the same set of material parameters. In total, seven parameters are required for
their calibration. They are subdivided in those related to the MCC theory and those describing the viscous behavior. The
MCC parameters correspond to compression index 𝜆, the swelling index 𝜅, the void ratio at the reference isotach eref0, the
critical state slope M in the p − q space, and the Poisson ratio 𝜈. The additional two parameters controlling the viscous
behavior correspond to the viscosity index Iv and the reference strain rate Dr. Detailed description of the procedure for their
determination is encountered in Hadzibeti88 and other works. However, in Appendix A, some hints are given for their
calibration. Table 1 lists the required parameters, with their respective names, approximate range, and some suggested
tests for their determination. In summary, two isotropic compression tests with different strain velocities and one triaxial
compression test are required as minimum to calibrate all parameters. Obviously, a higher number of tests increases the
calibration quality.

8 NUMERICAL IMPLEMENTATION

All constitutive models were implemented in a FORTRAN subroutine as “User Material” (UMAT), compatible with the
software ABAQUS Standard.89 A substepping scheme was adopted for all implementations to avoid numerical issues.
Very small substepping sizes in order of ||Δ𝜺|| = 10−5 were selected to assure numerical convergence. In addition, some
numerical recommendations for viscous models pointed in previous studies55,62,90 were considered for the OVP, NVP, and
VHP models. Specifically, while the viscous strain rate was semi-implicitly integrated, other components of the models
were explicitly computed. This required the computation of an algorithmic Jacobian Jalg, which is explained in the sequel.
Numerical integration of the models under different paths assuming element test conditions (homogeneous field for
stresses and strains) was solved with the use of a Newton-Raphson solution scheme, whereby tolerances and a maximum
number of iterations were specified to minimize the numerical error. For the NSFS model, an elastic predictor was always
computed to evaluate if an elastic or rather a viscoplastic step should be performed, as in Simo and Hughes.91 At each
viscoplastic step, a small correction was applied to the stress increment Δ𝝈 to assure the condition Fe = 0 at the end of the
increment. Other models were directly implemented without distinguishing between elastic and viscoplastic steps due to
the lack of a yield surface. All implementations showed rapid convergence, and no numerical issues were detected. All
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the subroutine UMAT are now available for their use in finite element computations. The algorithmic Jacobians of the
different models were found as follows.

The NSFS model has been explicitly integrated with a substepping technique. Hence, the algorithmic Jacobian Jalg has
been set equal to the continuum Jacobian J (see Equation 30), ie, Jalg = J. For the OVP and NVP models, a semi-implicit
integration for the viscous stress increment Δ𝝈vis has been implemented. The stress increment Δ𝝈 is therefore computed
according to the following mathematical procedure:

Δ𝛔 = E ∶ Δ𝜺 − E ∶
[

.
𝜺

vis Δt + 1
2
𝜕

.
𝜺

vis

𝜕𝛔
∶ Δ𝛔 + 1

2
𝜕

.
𝜺

vis

𝜕
.
𝜺

∶ Δ𝜺
]

⇒

[
I + 1

2
E ∶ 𝜕

.
𝜺

vis

𝜕𝛔

]
∶ Δ𝛔 = E ∶ Δ𝜺 − E ∶ .

𝜺
vis Δt − 1

2
E ∶ 𝜕

.
𝜺

vis

𝜕
.
𝜺

∶ Δ𝜺

⇒ Δ𝛔 =
[
I + 1

2
E ∶ 𝜕

.
𝜺

vis

𝜕𝛔

]−1

∶
[
Δ𝛔exp − 1

2
E ∶ 𝜕

.
𝜺

vis

𝜕
.
𝜺

∶ Δ𝜺
]
,

(66)

where the explicit stress increment Δ𝝈exp is computed as

Δ𝛔exp = E ∶ Δ𝜺 − E ∶ .
𝜺

vis Δt (OVP and NVP model). (67)

The required derivatives (𝜕 .
𝜺

vp)∕(𝜕𝛔) and (𝜕 .
𝜺

vis)∕(𝜕 .
𝜺) are given in Appendix B. A similar integration scheme has been

also performed with the VHP model. The only difference with Equation (66) is the computation of the explicit stress
increment Δ𝝈exp, which, according to Equation (46), reads as

Δ𝛔exp = E ∶ Δ𝜺 − E ∶ .
𝜺

hp − E ∶ .
𝜺

vis Δt (VHP model) (68)

9 ELEMENT TEST SIMULATIONS

In this section, a set of element test simulations are presented to analyze the performance of the different model families.
These simulations aim to show the distinct responses of the models under different conditions. Firstly, a set of illustrative
element tests are analyzed, ie, they are not calibrated to any particular material. The selected parameters are typical on
some clay-like soils and are listed in Table 2. The mathematical procedure in Section 6 was followed to adjust all models
to the same reference isotach, being characterized by the set of parameters eref0, 𝜆, and Dr. According to Section 6, the
selection of a unique reference isotach for all models implies that they present different OCR = 1 isotachs. Therefore, the
resulting characteristic void ratios ei0, describing the OCR = 1 isotach, were computed for each particular model according
to the relations given in Section 6. The values of ei0 are listed in Table 3. The illustrative simulations correspond to some
tests showing strain rate dependency. They include isotropic compression tests with different strain rates, creep tests,
relaxation tests, oedometric tests, and undrained creep tests. In addition, responses envelopes analysis92 were included as
well to analyze the models performance on different strain/stress rate directions. Response envelopes will allow to detect
directions at which viscoplastic effects act the most.

At the end, simulations of two experiments are included, the first consisting of an undrained triaxial test with tertiary
creep and the second of an oedometric test with different strain rate, creep, and relaxation stages.

TABLE 2 Material parameters for the simulations Parameters 𝜆 𝜅 M 𝜈 Iv eref0 Dr

Units [-] [-] [-] [-] [-] [-] [1/s]
Illustrative tests 0.1 0.02 1.0 0.25 0.04 1.2 10−6a, 10−10b

UTCTc

NSFS 0.15 0.025 1.29 0.25 0.038 1.2 10−4

OVP 0.15 0.025 1.29 0.25 0.04 1.2 4.5 × 10−4

NVPd 0.15 0.025 1.29 0.25 0.05 1.2 10−4

VHP 0.15 0.025 1.29 0.25 0.042 1.2 10−4

Oedometric test 0.76 0.07 1.35 0.25 0.06 6.3 10−10

a for NSFS, NVP, and VHP. b for OVP. c Undrained Triaxial Creep Tests. d NVP model
with the modification proposed by Vermeer & Neher.59
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Model Illustrative Tests Oedometric
NSFS model 1.234 7.24
OVP model 1.197 6.32
NVP model 1.201 6.74
VHP model 1.239 7.275

TABLE 3 Void ratio ei0 (at p = 1 kPa for the OCR= 1 isotach)

9.1 Isotropic compression with constant strain rate
Simulations of isotropic compression tests with different volumetric strain rates .

𝜀v were performed. These simulations
cataloged as basic, allow us to obtain an overview of the isotach boundaries acting at each model. Volumetric strain rates
ranging between .

𝜀v = {10−1, 10−10} 1∕s were systematically applied to generate different compression paths. Figure 3
presents the simulations of the NSFS, OVP, NVP, and VHP models. They show that under reference strain rate .

𝜀v = Dr,
yield to the reference isotach e = 1.2−0.1 ln(p), as a result of considering the procedure described in Section 6. The figures
show that the compression curves of the NSFS and VHP models are bounded by maximum isotachs, which are different
for each model. The isotachs of the OVP and NVP models are bounded by their elastic response at very high velocities, with
slope equal to 𝜅. This upper bound actually depends on the initial conditions of e and p and has been previously referred
to as “instant time line” by other authors.37,66 Simulations with the OVP model show that a lower bound exists because of
the consideration of a minimum isotach. Below this curve, the existence of isotachs for this model is not possible. But this
does not have to be necessarily a negative point, because the lower bound can be shifted by choosing a very low reference
creep rate Dr.

One of the reasons to use a minimum isotache is to limit the creep deformation at an infinitely long time, even though
this is not proven by experimental evidence yet, but it is not refuted either. Its definition requires an additional parameter,
such as Rmin. The problem is that an infinitely long time test is needed for its calibration. Otherwise, special procedures can
be developed in order to determine this parameter like the construction of prototype models for the considered geotechni-
cal problem whereby the final creep rate can be derived as a function of time. Note that in the literature, it is controversial
whether the creep reaches a final value or not. In the current paper, the minimum isotache for OVP simply corresponds to
the reference isotache line, which is not always the case. Some applications, such as problems dealing with very long time,
may be disadvantageous because the creep is limited. Yet, for issues with aging effects, the introduction of this isotache
may be rendered as convenient.

The maximum isotach has been introduced into some models, because it is inferred that above the normal consolidated
state OCR = 1, there must be a compression line for which the creep time is “0.”37 The line then describes the normally
and instantaneously compressed behavior of clays, thus the name “instant normal compression line.” For geotechnical
analysis, engineers may be used to have a bound of the void ratio, which implies a bound of the stress ratio, as otherwise
macro pores and their impact on the constitutive modeling should be treated. Because these effects are not subject of
the models described here, we find it appropriate to introduce a maximum bound of isotachs. The attentive reader may
believe that the introduction of a maximum isotache may not be sufficient for installations (shaking) or especially very
fast earthquakes. Yet, both the NSFS and the VHP model reach the maximum isotach for .

𝜀 → ∞, hence every strain rate
(even very fast loading) is considered.

Figure 4 presents the resulting mean stress p at a given void ratio e = const for different strain rate velocities. In
particular, Figure 4A presents the results for a void ratio of e = 1.15 and shows that while the NSFS and the VHP model
have yet not reached the maximum isotach at high velocities, the OVP model has already reached the minimum isotach
at low velocities. The NSFS and VHP reach their maximum isotach at a void ratio of e ≈ 1.0, as shown in Figure 4B.

The stress ratio, namely, the overconsolidation ratio OCR reached at the different isotachs, is depicted in Figure 5. The
figure shows that while the NSFS and VHP models show values of pei∕p ≥ 1, the OVP model shows always pei∕p ≤ 1.
The NVP model does not show any bound for the stress ratio pei∕p. For geotechnical analysis, engineers may be used to
have a bound of the void ratio, which implies a bound of the stress ratio, as otherwise macro pores and their impact on
the constitutive modeling should be treated. However, these effects are not subject of the models described here. Worthy
to note is also the fact that the models normal consolidation line (OCR=1) corresponds to different strain rates, hence
isotachs, for each model. While for the OVP and NSFS model the OCR = 1 line corresponds to the reference isotache,
for the VHP and NSFS models, the maximum isotache corresponds to the normal consolidation line OCR=1; see also
Figure 5.

Examination of the constitutive equations allow us to determine the relations describing the isotach formulation. In
the following lines, relations depending on the void ratio e, mean pressure p, and strain rate .

𝜀v are found to describe the
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FIGURE 3 Simulations with different strain rates (isotachs)

isotach behavior for each model. The isotach curves under isotropic compression (q = 0) are described by the relation
.p = p(1 + e)∕𝜆 .

𝜀v. In the following lines, the relations describing the isotach curves are found for each model. Let us
evaluate the constitutive equations of the NVP and OVP models for the isotach condition

.p =
p(1 + e)

𝜅
( .
𝜀v −

.
𝜀

vp
v ) =

p(1 + e)
𝜆

.
𝜀v, (NVP model). (69)

From Equation (69), one can show that from the constant strain rate condition 𝜀̈v = 0 results the following relation:

.
𝜀v,a
.
𝜀v,b

=
.
𝜀

vp
v,a

.
𝜀

vp
v,b

, (70)

where the subindices a and b denote two different isotachs. Substitution of the corresponding definitions of .
𝜀

vp
v for the

NVP and OVP models in Equation (70) leads to the relations

.
𝜀v,a
.
𝜀v,b

=
(

OCRb

OCRa

)1∕Iv

(NVP model), (71)

.
𝜀v,a
.
𝜀v,b

= (OCRb)1∕Iv − 1
(OCRa)1∕Iv − 1

(OVP model). (72)
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FIGURE 4 Mean pressure p at different rates .
𝜀v under isotropic compression

FIGURE 5 Stress ratio pei∕p reached at different strain rates .
𝜀v upon isotropic

compression

Similarly, the isotach condition for the VHP model is

.p = K( .
𝜀v −

.
𝜀

hp
v − .

𝜀vis
v ) =

p(1 + e)
𝜆

.
𝜀v. (73)

Substitution of the corresponding definitions of K and .
𝜀

hp
v in Equation (73) results in the following relation:

x .
𝜀v =

.
𝜀vis

v , with x =
1 − Y0m(p∕pei)2

1 − Y0m
, (VHP model). (74)

Hence, two isotachs are related with the following relation for the VHP model:

.
𝜀v,a
.
𝜀v,b

=
.
𝜀vis

v,a xb
.
𝜀vis

v,b xa
=
(

OCRb

OCRa

)1∕Iv

· xb

xa
, (VHP model). (75)

The inequality xa ≠ xb is true considering that x = x(p, e) is not a constant but rather a function of the mean stress p
and void ratio e. Finally, we inspect the NSFS model. Considering the NSFS relations x .

𝜀v =
.
𝜀vis

v , .
𝜀vis

v =
.
𝜆

vis =
.
𝑓 t∕A, where
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A = (𝜕Fe∕𝜕𝝈) ∶ E ∶ m − 1 ∶ m∕Cp, we write

xa
.
𝜀v,a

xb
.
𝜀v,b

=
.
𝜀vis

v,a
.
𝜀vis

v,b

=
.
𝑓 t,a∕Aa

.
𝑓 t,b∕Ab

, (NSFS model). (76)

Substitution of
.
𝑓 t = Iv𝜆∕Cp(1∕OCR)1∕Iv in the latter equation gives

.
𝜀v,a
.
𝜀v,b

=
(

OCRb

OCRa

)1∕Iv Ab xb

Aa xa
, (NSFS model). (77)

One can show that for the NSFS model, the relation x = (𝜅∕𝜆−1+
.
𝜆

pl) holds. Equations (71), (72), (70), and (77) describe
the isotach behavior for the NVP, OVP, VHP, and NSFS models, respectively. These equations relate two isotachs with
each other and are functions of the void ratio e, mean pressure p, and volumetric strain rate .

𝜀v. Their solutions coincide
with the e − p asymptotes reached by the compression curves at constant volumetric strain rates.

It should be emphasized that most existing one-dimensional isotache models tend to overestimate the creep strains
measured after surcharge loading due to their viscous formulation 𝜀 = 0.434 C𝛼𝜀 ln( .

𝜀1∕
.
𝜀)93 (with 𝜀1 being the axial strain).

Yuan et al93 proposed a two-parameter modification of this relation, which has resulted in a better match with laboratory
data. Because of the potential dependence of the viscous strain rate on the overconsolidation ratio (see Equation 14),
the creep settlements after surcharge loading may be predicted well by these models, as will be shown in Section 9.2.
Furthermore, the viscous behavior of highly overconsolidated clays, ie, OCR ≥ 4, is likely to be dominated by secondary
swelling instead of creep. But certainly, the creep may resume after for example a decade-long wait.

9.2 Creep test
Creep tests under isotropic states (q = 0) are now performed to evaluate the models response. The creep condition is
simulated by restraining the effective stress for a large time, ie, .p = 0 and q = 0. Following Section 4, a similar response
to the one described by the Buisman-type Equation 10 is expected from the simulations. For each model, two creep tests
after isotropic compression were performed: Their initial conditions correspond to e0 = 1.2, p = 1 kPa. An isotropic
compression is applied but with distinct strain rates .

𝜀v = {Dr, 5Dr} for each test. In order to achieve the same creep
response, Dr is chosen according to the values listed in Table 2, thus Dr = 10−10 for OVP and Dr = 10−6 for NSFS, NVP,
and VHP. At the end, a creep path of 1010 seconds is performed.

Figures 6 and 7 present the simulations of all models. The response of the models can be summarized as follows: A
similar slope of the creep test can be observed for all models in the e vs ln(t) space, see Figure 7, except by the OVP model.
The slope is equal to C𝛼 in the e vs ln(t) space, see Figure 7. The OVP model is the only one showing a lower bound for the
creep deformation, because of the consideration of the minimum isotach. Of course, by choosing .

𝜀OVP
v = DNSFS,NVP,VHP

r ,
the creep behavior of OVP is more pronounced, and similar results to NVP are obtained.

The accurate simulation of creep is indispensable for predicting the flow pressure on dowelling elements of creeping
slopes. The reduction of creep with OCR proves that the models can capture well the surcharge-induced stress history
of the material. Hence, they may provide a realistic creep prediction and are able to control long-term settlements using
surcharge loading.

Another, very important geotechnical issue in engineering practice is the prediction of long-term consolidation set-
tlement, especially the process of residual settlement.94-96 In construction site, the consolidation settlement is generally
estimated based on the e − ln(pei) line obtained from a 24-hour incremental loading oedometer tests, which often cor-
responds to a strain rate of .

𝜺 = 10−7 /s. In order to achieve a more accurate prediction, Watabe and Leroueil96 derived
a relation for the creep strain using the compression index Cc at the consolidation pressure, the lower limit of the pre-
consolidation pressure, and the preconsolidation pressure at the respective strain rate. However, in situ strain rates are
several orders smaller than those used in experiments. Considering Equation (11) in one dimension, which presents the
basis for the multiaxial creep rate incorporated into the models, it can be concluded that one-dimensional compression
creep can be captured well by the models as a function of in situ strain rate, C𝛼 , Cc, and void ratio e.
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FIGURE 6 Creep tests after isotropic compression, e vs p space. Dr corresponds to the values listed in Table 2, thus Dr = 10−10 for OVP and
Dr = 10−6 for NSFS, NVP, and VHP

9.3 Stress relaxation test
Stress relaxation paths are now simulated under isotropic states (q = 0). The stress relaxation condition is achieved by
restraining deformations under isotropic states, ie, .

𝜺 = 0 with q = 0. Similar to the creep test, the stress relaxation is started
after an isotropic compression path. For each model, two relaxation paths were simulated after isotropic compressions
with strain rates of .

𝜀v = {Dr, 5Dr}. In order to achieve a similar relaxation response, Dr is chosen according to the values
listed in Table 2, thus Dr = 10−10 for OVP and Dr = 10−6 for NSFS, NVP, and VHP. Both relaxation paths start at different
isotachs but with same void ratio e = 0.8. They simulate a period of t = 1010 seconds. The results are plotted in Figures 8,
9, and 10.

Figure 9 shows that for a given void ratio, both simulations of each model yield asymptotically to the same curve in the
p vs ln(t) space. The analytical solution of this asymptote is deduced later for all models except for the OVP model and is
plotted with dashed lines in Figure 9A,C,D. Notice that the OVP model path is stopped by the minimum isotach, which
acts as lower boundary. Of course, by choosing .

𝜀OVP
v = DNSFS,NVP,VHP

r , the relaxation behavior of OVP is more pronounced
and similar results to NVP are obtained. In Figure 10, the curves are gathered together for comparison purposes.

We now proceed to deduce the analytical solution of the stress relaxation paths. Consider the NVP model constitutive
Equation (42). The relaxation condition .

𝜺 = 0, together with Equation (42) yields to .
𝜺 = E ∶ (− .

𝜺
vp). Under isotropic
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FIGURE 7 Creep tests after isotropic compression. Representation of the material parameters C𝛼 = Iv∕𝜆. Analytical solution corresponds
to Equation 10 and is solved for each constitutive equation. Dr = 10−6 for both diagrams

stress conditions (q = 0), the latter relation is simplified to .p = K (− .
𝜀

vp
v ). Substitution of .

𝜀
vp
v (see Equation 43) and K (see

Equation 24) yields to the relation

.p =
p (1 + e)

𝜅

(
−Dr

(
p

pei

)1∕Iv
)
, (78)

which is an ordinary differential equation with solution p = p(t). Let cnvp = cnvp(e) denote the function of the void ratio
cnvp = Dr (1 + e) p−1∕Iv

ei ∕𝜅. Substitution of cnvp in Equation (78) leads to the simplified form

.p = −cnvp p1+1∕Iv with solution p =
(

Iv

cnvp t − L1

)Iv

, (79)

where L1 is an integration constant, for instance, found from the initial relaxation stress condition with p(t = 0) = p0:

L1 = − Iv

p1∕Iv
0

(integration constant solution forp(t = 0) = p0). (80)

Substituting L1 into Equation (79) yields to the relation

p =

(
Iv cnvp

t + Iv∕(cnvp p1∕Iv
0 )

)Iv

=
(

p−1∕Iv
0 +

cnvp

Iv
t
)−Iv

(NVP). (81)

A similar mathematical procedure can be followed to find the analytical solutions for the NSFS and VHP models.
Consider the constitutive Equations (22) and (46) under the conditions q = 0 and .

𝜺 = 0:

.p =
p (1 + e)

𝜅
(− .

𝜀
vp
v ), .

𝜀
vp
v =

.
𝜆 = Iv𝜆𝜅

𝜆 − 𝜅

(
p

pei

)1∕Iv

(NSFS), (82)

.p =
p (𝜆 + 𝜅) (1 + e)

2 𝜆 𝜅
(− .

𝜀
vp
v ), .

𝜀
vp
v = Iv 𝜆

(
p

pei

)1∕Iv

(VHP). (83)

One may show that the same differential Equation (79) is obtained if replacing the constant cnvp by the function cnsfs =
cnsfs(e) = Iv 𝜆 (1 + e) p−1∕Iv

ei ∕(𝜆 − 𝜅) for the NSFS model and by cvhp = cvhp(e) = Iv (𝜆 + 𝜅) (1 + e) p−1∕Iv
ei ∕(2 𝜅) for the
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FIGURE 8 Stress relaxation tests after isotropic compression. Dr corresponds to the values listed in Table 2, thus Dr = 10−10 for OVP and
Dr = 10−6 for NSFS, NVP, and VHP

VHP model. Following the same procedure, one can show that the simplified differential form describing the relaxation
process (q = 0, .

𝜺 = 0) of the OVP model is

.p = −covp

(
p1+1∕Iv + p p1∕Iv

e,min

)
(OVP), (84)

whereby covp = Dr (1+e) p−1∕Iv
ei ∕𝜅 is a void ratio function. The latter equation lacks of analytical solution. Figure 9 includes

the analytical solutions of the NSFS, NVP, and VHP models.

9.4 Response envelopes
Response envelopes were originally proposed by Gudehus97 to analyze the directional response of constitutive models.
The shape of response envelopes in the p-q space results from joining the end points of different p − q paths, all of them
beginning with the same initial conditions (e = e0, 𝝈 = 𝝈0) and subjected to identical strain increment magnitude||Δ𝜺|| = 0.2 % on different strain rate directions

−→.
𝜺 . The analysis is usually performed under triaxial conditions.

For each model, four different response envelopes are constructed under triaxial conditions. Two initial conditions were
considered: at isotropic stress states, with p = 100 kPa, q = 0, and at anisotropic stress states at p = 100 kPa and q = 75
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FIGURE 9 Stress relaxation tests after isotropic compression. Analytical solution according to Equation 81, with the respective void ratio
functions cnsfs, cnvp, and cvhp. Dr corresponds to the values listed in Table 2, thus Dr = 10−10 for OVP and Dr = 10−6 for NSFS, NVP, and VHP

kPa. For each initial state, two different strain velocities were applied, || .
𝜺|| = 10−5 1/s and || .

𝜺|| = 10−7 1/s. The results are
plotted in Figure 11. From the results, the following observations are commented:

• Response envelopes showed larger stress increments Δ𝝈 for the lowest strain rate case (|| .
𝜺|| = 10−7 1/s). They showed

also that the effect of the strain rate is only evident in a particular zone of the response envelope. The zone showing no
strain rate dependency is governed by the elastic response of the model.

• The NSFS and VHP models showed lower strain-rate dependency than other models. This is related to the fact that
both models incorporate the maximum isotach and the selected initial conditions are close to the maximum isotach.
Therefore, their viscous effects are in someway bounded.

• In contrast to other models, response envelopes of the NSFS model present corners at points dividing the elastic and
viscoplastic response. Other models showed rounded shape. Corners on responses envelopes are typical on elastoplastic
formulations and coincide with the division of the elastic and (visco-)plastic response.55 To the date, these corners have
not been experimentally found.

• The response envelope of the VHP model with initial conditions of p = 100 kPa and q = 75 kPa shows a “rotation” of
its main axis with slope similar to the critical state. Other models do not show this “rotation.” This rotation is attributed



TAFILI ET AL. 21

FIGURE 10 Stress relaxation tests after isotropic compression. Analytical solution according to Equation 81, with the respective void ratio
functions cnsfs, cnvp, and cvhp. Dr = 10−6 for both diagrams

to the formulation of the (hypo-)elastic stiffness, which, for this model, incorporates the dilatant terms E ∼ (1r + r1).
Rotated responses envelopes have been already observed in experimental works.98,99

9.5 Simulation of undrained triaxial creep tests
Undrained creep has been observed in many experimental works with soft soils,100-104 and its simulation has been
addressed in other works.38,39,44,50,59,105 The usual procedure is to perform an undrained triaxial test until a small value
of axial strain is reached. Thereafter, the axial stress 𝜎1 and confining pressure 𝜎3 are kept constant. In terms of Roscoe
invariants q and p, the deviator stress is kept constant .q = 0, while the mean (effective) stress p is allowed for variations.
These conditions result in a creep process leading to the development of pore pressures pw and axial strains 𝜀1 under
undrained conditions ( .

𝜀v = 0). Details of undrained creep can be found in other works.106-109 Under the mentioned condi-
tions, an acceleration of the creep process is sometimes evident when the deviator stress is close to the maximum deviator
stress qf, ie, q ≈ qf. This creep acceleration has been refereed to as “tertiary creep” by some authors.107,110,111 Eventually,
a pronounced acceleration of the axial strains may lead to the failure of the sample and loss of controllability. This case
is known as “undrained creep rupture” and has been also studied in other works. In the following lines, we examine the
capabilities of the different models with respect to these observations.

Undrained creep is simulated with the four models. Initial conditions under isotropic states q = 0 were assigned to
match a void ratio e = 0.739 and mean stress of p = 100 kPa. These initial conditions coincide with a point at the
reference isotach, ie, Rref = 1. An undrained shearing under triaxial conditions is then performed with a strain velocity of|| .
𝜺|| = 10Dr. The undrained shearing is stopped at different axial strain levels 𝜀1. Subsequently, undrained creep (q = 0)

is simulated for a period of 106 seconds. Figures 12 and 13 present the simulations in the q vs 𝜀1 space and p vs q space. A
monotonic undrained test with the same strain velocity has been also included for comparison purposes. Four different
creep paths were simulated, each at different q. Simulations show that all models are able to simulate undrained creep,
which is obvious because of their formulations. The resulting strain velocity under the undrained creep is examined in
Figure 14. The only models evidencing simulations of tertiary creep, ie, a strain acceleration, correspond to the NSFS and
VHP models; see Figure 14A,D. Figure 14D shows that these special cases ended with creep rupture because the condition
.
𝜀s → ∞ is reached. Other models did not show evidence of this capability. According to Vermeer and Neher,59 a NVP-type
model can also reproduce tertiary creep, when the viscous strain is formulated as follows:

.
𝜺

vp = 1
𝛼

Dr

( 1
OCR 3D

)1∕Iv
m , with 𝛼 = 𝜕𝑓

𝜕p
= 1 −

(
q

M p

)2

. (85)
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FIGURE 11 Response envelopes constructed at different initial conditions (p = 100 kPa, q = 0) and (p = 100 kPa and q = 75 kPa) and
different strain rates (|| .

𝜺|| = 10−5 1/s and || .
𝜺|| = 10−7 1/s)

Note that 𝛼 is a function of the stress and tends to 𝛼 → ∞ for states very close to critical states. Some simulation examples
with this modification are shown in Figure 13 in p−q and q−𝜀1 plane, and in Figure 14(E), the strain acceleration leading
to creep rupture is presented.

We now examine the creep rupture condition under undrained triaxial tests for the models NSFS and VHP. Consider
triaxial conditions, such that one may simplify the constitutive Equations (46) and (28) to

( .p.q

)
=
(

K11 K12
K21 K22

)( .
𝜀v.
𝜀s

)
+
( .pvis

.qvis

)
(86)

where .p = −( .
𝜎11 + 2 .

𝜎22)∕2, .q = −( .
𝜎11 − .

𝜎22),
.
𝜀v = −( .

𝜀11 + 2 .
𝜀22) and .

𝜀s = −2∕3( .
𝜀11 − .

𝜀22) are the rates of the Roscoe
invariants, .pvis and .qvis are the Roscoe invariants of .𝛔vis, and Kij are the resulting stiffness coefficients. Imposition of the
undrained creep conditions .q = 0 and .

𝜀v = 0 in Equation (86), leads to the following relation:

0 = K22
.
𝜀s +

.qvis (undrained creep). (87)
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FIGURE 12 Simulations of undrained creep at different deviator stresses q with NSFS and OVP

The creep rupture is experienced when .
𝜀s → ∞ or equivalently

K22 = 0 (undrained creep rupture condition). (88)

Computation of the scalar function K22 is not an easy task. It depends on the mean stress p, the deviator stress q, and
the void ratio e. For the case of the NSFS model, it also depends on the state variable 𝜀

vp
v , which makes its solution path

dependent. Hence, we find a solution only for the VHP model. For a given void ratio e, one may numerically solve a set
of points p − q solving the condition K22 = 0. For this purpose, a special script in the software WOLFRAM MATHEMAT-
ICA has been implemented. Some details of the programming lines are given in Appendix C. Figure 14(F) shows some
envelopes of the creep rupture condition K22 = 0 for the VHP model. Three different solutions are found for different
void ratios e = {0.7, 0.75, 0.8}. The surface described by the condition OCR3D = 1, see Equation 8, is also included for
comparison purposes. Notice that for a given void ratio, the rupture curve is found to the right side of the CSL line at high
deviator stresses q. This is in accordance with simulations and also experimental observations.

Now, we will compare the simulated response of undrained triaxial creep tests (UTCTs) of Haney clay with test data
provided by Vaid and Campanella.112 The material parameters are listed in Figure 2. All samples have been initially
consolidated to p = 525 kPa for a period of time required to reach pei = 373 kPa. Subsequently, undrained creep tests were
performed at constant deviatoric stresses of q = {278.3, 300.3, 323.4} kPa. Creep under constant shear stress is observed
at for all three values of q. All models are able to describe this behavior in accordance with the experimental evidence as
shown in Figure 15. The OVP model shows that it can not capture the undrained creep for q = 278.3 kPa⇒ q∕qmax = 75 %.
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FIGURE 13 Simulations of undrained creep at different deviator stresses q with NVP, VHP, and NVP after Vermeer and Neher59
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FIGURE 14 Plots of axial strain rates .
𝜀1 against time t during undrained creep, see Figures 12 and 13
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FIGURE 15 Results of triaxial creep tests. Normally consolidated samples with p0 = 700 kPa were sheared to different deviatoric stresses
q = {278.3, 300.3, 323.4} kPa. Subsequently, undrained creep under constant q is observed

By shifting the reference isotach, one could achieve undrained creep for q = 278.3 kPa as well, but then the simulations
for q = {300.3, 323.4} kPa would greatly overestimate the undrained creep rendered by the experiments. From Figure 15,
it is also evident that all models, except for OVP, reach a vertical tangent. Hence, NSFS, NVP, and the VHP models are able
to simulate tertiary creep in accordance with experimental results and the aforedescribed qualitative simulations. At this
point, it is worthy to note that the flow rule term 𝛼, introduced in Equation (85), could also be applied to an overstress-type
model, making OVP models capable of capturing tertiary creep.

The accurate simulation of these effects are of great importance for the assessment of the failure probability of a creeping
slope due to accelerated (tertiary) creep. Creep in general is indispensable for predicting the flow pressure on dowelling
elements of these slopes.

9.6 Simulation of an oedometric test with different strain rates
The assessment of the models is now examined with simulations of an experimental study. The tested material corre-
sponds to a Kaolin clay reported by Niemunis and Krieg.7 The Kaolin is a medium plasticity clay with plasticity index equal
to PI = 12, 2%. Reconstituted samples of height and diameter equal to 50 mm were used for this purpose. The experiment
consists of a volumetric compression under oedometric conditions considering strain rate effects and unloading-reloading
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FIGURE 16 Oedometer test with loading, unloading-reloading, relaxation, and creep stages. Experiment on a Kaolin clay reported by7

with the axial strain rate .
𝜀1 corresponding to a = 0.936 %/h, b = e = g = j = n = 0.156 %/h, c = k = −0.0156 %/h, m = −0.156 %/h, one

relaxation phase h and four creep stages d, f, i, l

Model 1 2 3 4 5 6 7
NSFS model x x x x
OVP model x x x
NVP model x
VHP model x

Note. 1: limited creep deformation; 2: limited
stress relaxation; 3: maximum isotach for very
high strain rates; 4: loss of convexity and corners
on responses envelopes; 5: absence of undrained
creep rupture; 6: absence of instant creep after
unloading path; 7: ability to simulate viscous and
nonviscous materials.

TABLE 4 Some properties shown by the simulations of the different models

cycles. The experimental path includes creep and relaxation stages. The calibrated parameters are listed in Table 2, and
the characteristic void ratios ei0 describing the OCR= 1 isotach in Table 3. In Figure 16, dashed lines represent the
experimental curve, while continuous lines represent the simulations.
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The simulations showed some relevant aspects of the model capabilities: All models, except by the NSFS model, were
able to reproduce creep after an unloading path. The sequence loading-unloading-creep forced the NSFS model to remain
under elastic response and thus to present at that instance a complete inability to simulate creep. This implies that, for
the NSFS, an infinitesimal unloading disables the creep simulation. This is of course against experimental observations
and may be considered as one of the main disadvantages of classical NSFS models. Other strain-rate dependencies were
satisfactory captured by all models.

10 DISCUSSION AND FINAL REMARKS

The present work was devoted to review four different models for viscous clays belonging to different model families,
namely, NSFS, NVP, OVP, and VHP. In order to perform a fair comparison, the developed formulations accounted for
the same material parameter definitions, same reference isotach, and other rules established in Section 5. Numerical
investigations allowed to detect a number of discrepancies related to their formulations. Some of them are in the following
lines mentioned, while others were directly within the text indicated: Discrepancies observed at simulations of creep and
stress relaxation are mostly related to the consideration of a maximum and/or minimum isotach in their formulations.
While the OVP model incorporates a minimum isotach, at which no more rate effects are experienced for creep and stress
relaxation, the NSFS and VHP model present a maximum isotach, which bounds instant time effects. The NVP model
does not incorporate any of these bounding isotachs. Response envelopes showed that viscous effects are exhibited only
at certain stress rate directions by all models, and a loss of convexity in conjunction with the appearance of corners were
only noticed on those from the NSFS model. The undrained creep analysis showed that models having a strain rate with
three components, such as the NSFS and VHP, are prone to include the simulation of undrained creep rupture in their
capabilities. The simulation of a real oedometer test, including strain-rate dependencies, showed that the NSFS model
can not simulate creep after an unloading path. Finally, it seems that the consideration of a maximum isotach allows
the formulation to enable the simulation of viscous and nonviscous clays. The latter point was not illustrated through
simulations but shown directly through their formulations. Table 4 provides a summary of these observations. As a final
note, it is recalled that the observations listed in Table 4 hold only for the formulations inspected herein, which were
proposed according to their original works for each model family. The consideration of a Buismann-type relation for the
description of creep processes leads to an accurate estimation of the viscous behavior such as for example the prediction of
creep settlements after surcharge loading. Creep in general is indispensable for predicting the flow pressure on dowelling
elements of creeping slopes. All models can be used for this purpose. The accurate simulation of tertiary creep is of great
importance for the assessment of the failure probability of these slopes due to accelerated (tertiary) creep. The NSFS, VHP,
and NVP (with the extension proposed in Vermeer and Neher59) models have shown the ability to describe these effects
well. Furthermore, it can be concluded that the simulation of tertiary creep can be achieved by different assumptions ie,
using three components models (elastic+plastic+viscoplastic) or a modified flow rule (with 𝛼 → ∞ for states close to
critical states).

Of course, special extensions of the studied models may provide different features and therefore different conclusions
but were not studied to keep simplicity.
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APPENDIX A: SHORT GUIDE FOR THE MATERIAL PARAMETER DETERMINATION

The following lines give a short guide for the determination of the material parameters.

• The compression and swelling index, denoted with 𝜆 and 𝜅, respectively, are calibrated with isotropic or oedometric
compression curves. A compression path with constant strain rate is expected to approach asymptotically to a line in
the e−ln(p) space with slope equal to 𝜆. Parameter 𝜅 is calibrated at the slope of an unloading path in the e−ln(p) space.

• The critical state slope M is calibrated through the critical state friction angle 𝜑c through the relation M = 6 sin𝜑c∕(3−
sin𝜑c).

• The reference strain rate Dr is recommended to be set to the volumetric strain rate of a known experimental curve
Dr =

.
𝜀v.

https://doi.org/10.1155/2014/968738
https://doi.org/10.1155/2014/968738
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• The characteristic void ratio eref0 is found by adjusting the reference isotach, described by e = eref0 − 𝜆 ln(p), to the
compression curve with .

𝜀v = Dr.
• The viscosity index Iv can be found through two isotachs under isotropic compression (q = 0). To that end, consider the

overconsolidation ratios of OCRa and OCRb and volumetric strain rates of .
𝜀v,a and .

𝜀v,b for the two isotachs, respectively.
One may use the relation for the NVP model (see Equation 71):

Iv = ln
(

OCRb

OCRa

)
∕ ln

( .
𝜀v,a
.
𝜀v,b

)
. (A1)

• The poisson ratio 𝜈 can be adjusted to match the stiffness of an undrained triaxial test. At the q vs. 𝜀1 space, the initial
stiffness of an undrained triaxial test is equal to 3G, where G is related to 𝜈 through Equations 24. A simple trial and
error procedure may be also useful to find a 𝜈 which renders accurate simulations for undrained tests.

APPENDIX B: REQUIRED DERIVATIVES

In the following lines, the required derivatives for the semi-implicit integration of the viscoplastic strain rate .
𝜺

vp for the
OS and VP models and viscous strain rate .

𝜺
vis for the VHP model are given.

B.1 OVP and NVP models
For these models, the derivative (𝜕 .

𝜺
vp)∕(𝜕𝛔) is found as follows:

𝜕
.
𝜺

vp

𝜕𝛔
= 𝜕

.
𝜺

vp

𝜕p
⊗

𝜕p
𝜕𝛔

+ 𝜕
.
𝜺

vp

𝜕q
⊗

𝜕q
𝜕𝛔

, (B1)

with
𝜕

.
𝜺

vp

𝜕p
=

Dr
(

M2 p2 − q2) (
1 + q2∕

(
M2 p2))1∕Iv

Iv p (pei∕p)1∕Iv
(

M2 p2 + q2
) , (B2)

𝜕
.
𝜺

vp

𝜕q
=

2 Dr q
(
1 + q2∕

(
M2 p2))1∕Iv

Iv (pei∕p)1∕Iv
(

M2 p2 + q2
) . (B3)

Note that the third stress invariant has not been considered.

B.2 VHP model
For the VHP model, the derivative (𝜕 .

𝜺
vp)∕(𝜕𝛔) is found as follows:

𝜕
.
𝜺

vis

𝜕𝛔
= 𝜕

.
𝜺

vis

𝜕OCR3D
⊗

(
𝜕OCR3D

𝜕p
𝜕p
𝜕𝛔

+ 𝜕OCR3D

𝜕q
𝜕q
𝜕𝛔

)
, (B4)

with
𝜕

.
𝜺

vis

𝜕OCR3D
= 𝜆 OCR1−1∕Iv

3D , m (B5)

𝜕OCR3D

𝜕p
= −

𝑓 2
b Mc2 p2 pei + (2 p − 3 pei) q2

𝑓 2
b M2 p4

, (B6)

𝜕OCR3D

𝜕q
=

2 (p − pei) q
𝑓 2

b M2 p3
, (B7)

𝜕p
𝜕𝛔

= −1
3

1,
𝜕q
𝜕𝛔

= 3 𝛔∗

2 q
. (B8)

The derivative (𝜕 .
𝜺

vis)∕(𝜕 .
𝜺) is found as follows:

𝜕
.
𝜺

vis

𝜕
.
𝜺

= 𝜕
.
𝜺

vis

𝜕e
⊗

𝜕e
𝜕

.
𝜺

= (1 + e) 𝜕
.
𝜺
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𝜕e
⊗ 1, (B9)
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and
𝜕

.
𝜺

vis

𝜕e
= 𝜕

.
𝜺

vis

𝜕OCR3D

(
𝜕OCR3D

𝜕pei

𝜕pei

𝜕e
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𝜕𝑓b

𝜕𝑓b

𝜕e

)
, (B10)

with
𝜕OCR3D

𝜕pei
= 1

p
− 1

p

(||r||
𝑓b

)2

,
𝜕OCR3D

𝜕𝑓b
= − 2
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(
1 −

pei

p

) (||r||
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)2

, (B11)

𝜕pei

𝜕e
= −1

𝜆
exp

(ei0 − e
𝜆

)
,

𝜕𝑓b

𝜕e
= −

n𝑓 𝑓b0 (e∕ei0)n𝑓−1

2 ei0

√
1 − (e∕ei0)n𝑓

. (B12)

APPENDIX C: PROGRAMMING THE CREEP RUPTURE CONDITION FOR THE VHP MODEL

For triaxial conditions, we may simplify the VHP model to the following matricial form:

[ .𝛔] = [E] [ [ .
𝜺] − Y [m]|| .

𝜺|| ] + [ .𝛔vp], (C1)

whereby

[ .𝛔] =
[ .
𝜎11.
𝜎22.
𝜎33

]
=

[− .p + 2∕3 .q.q − 1∕3 .q.q − 1∕3 .q

]
, [ .

𝜺] =

[ .
𝜀11.
𝜀22.
𝜀33

]
=

[−1∕3 .
𝜀v −

.
𝜀s

−1∕3 .
𝜀v +

.
𝜀s

−1∕3 .
𝜀v +

.
𝜀s

]
(C2)

For the same conditions, the elastic stiffness matrix [E] may be written as follows:

[E] = K

[ 1 1 1
1 1 1
1 1 1

]
+ 2G

[ 2∕3 −1∕3 −1∕3
−1∕3 2∕3 −1∕3
−1∕3 −1∕3 2∕3

]
− K√

3

(
[r][1]T + [1][r]T) , (C3)

and the stress ratio is computed as

[r] = 1
p

[ 2∕3 −1∕3 −1∕3
−1∕3 2∕3 −1∕3
−1∕3 −1∕3 2∕3

][−p + 2∕3q
q − 1∕3q
q − 1∕3q

]
(C4)

The hypoplastic flow rule is computed as

[m] = 1√
3

−1∕2
√

2∕3Mc(1 − q∕p∕Mc)[1] + [r]∕(
√

2∕3Mc)|| − 1∕2
√

2∕3Mc(1 − q∕p∕Mc)[1] + [r]∕(
√

2∕3Mc)|| . (C5)

The nonlinear tensor [N] is
[N] = −Y ([E][m]). (C6)

whereby [n] represents the unit vector pointing in triaxial compression conditions

[n] = 1√
2

[ −1
0.5
0.5

]
(C7)

The continuum Jacobian matrix is
[J] = [E] + [N].[n]T . (C8)

We now transform the continuum Jacobian matrix [J] under Roscoe components by performing the following opera-
tions. Let denote [Ms] and [Me] the transformation matrices, such that [t] = [Ms][𝝈] and [d] = [Me][𝜀], and [t] = [p, q, 0]T

and [d] = [𝜀v, 𝜀s, 0]T are the Roscoe stress and strain components vectors, respectively. Hence, the transformation matrices
[Ms] and [Me] read

[Ms] =

[−1∕3 −1∕3 −1∕3
−1 1∕2 1∕2
0 −1 1

]
and [Me] =

[ −1 −1 −1
−2∕3 1∕3 1∕3

0 −1∕2 1∕2

]
(C9)

Let [Epq] denote the continuum jacobian matrix under Roscoe variables, such that

[t] = [Epq][d] + [tvp]. (C10)
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Considering the relations above, one can show that the following identity holds:

[Epq] = [Ms][E][Me]−1. (C11)

The undrained creep rupture condition is satisfied if the component [Epq](2,2) vanishes:

[Epq](2,2) = 0 (undrained rupture condition). (C12)

APPENDIX D: MATHEMATICA SCRIPT FOR THE CALIBRATION OF EI0

In order to compare the VHP and UH models with the VP model, we calibrated them to have the same reference isotach.
For this purpose, first the overconsolidation ratios at this reference isotach are calculated. VP model possess OCR = 1 at
this .

𝜀 = Dr - line. The value of OCR for the other models is obtained by solving a nonlinear equation, eg, with a Math-
ematica script. After this, the equivalent void ratio is obtained from the cam clay equation for the normal consolidation
line (in this case, reference isotach). The Mathematica scripts for these steps read the follow lines:

(*VHP model*)
(*Parameters*)
ClearAll[der, Y0max, kappa, lambda];

(*DEFINE PARAMETERS*)
Calpha = 0.005; (*Creep index*)
lambda = 0.1; (*compression index*)
kappa = 0.01; (*swelling index*)
NN2 = 1.2;(*void ratio of the reference Isotach at p=1 kPa*)
Iv = Calpha/lambda // N;(*viscosity index*)
rk = lambda/kappa;
Y0max = (rk - 1)/(rk + 1) // N;
der = 1.0 ∗ 10(−6);

nn1 = nn /. FindRoot[(1 − Y0max)der == (1 − Y0max ∗ (1∕nn)2)der − Calpha ∗ (1∕nn)(1/Iv)Sqrt[3],nn, 0.1];
Print["N from OCR=1 Linie:"
NN2 - lambda*Log[1/nn1]

(*UH model*)
(*Parameters*)
ClearAll[der, Y0max, kappa, lambda];

(*DEFINE PARAMETERS*)
Calpha = 0.005; (*Creep index*)
lambda = 0.1; (*compression index*)
kappa = 0.01; (*swelling index*)
NN2 = 1.2;(*void ratio of the reference Isotach at p=1 kPa*)
Iv = Calpha/lambda;(*viscosity index*)
M = 1.35;
chi = M2∕(12 ∗ (3 − M));
Mf = 6*(Sqrt[(chi/nn*(1 + chi/nn))] - chi/nn);
der = 1.0 ∗ 10(−6);



TAFILI ET AL. 35

a = 1 + ((lambda − kappa)∕kappa) ∗ (M∕Mf)4;
nn1 = nn /.
FindRoot[der∕lambda == der∕kappa∕a − Calpha ∗ nn(1/Iv)∕(1 + NN2)∕kappa∕a,nn, 0.1];
Print["N from OCR=1 Linie:"]
NN2 - lambda*Log[nn1]
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