81 research outputs found

    Nuclear classical dynamics of H2_2 in intense laser field

    Full text link
    In the first part of this paper, the different distinguishable pathways and regions of the single and sequential double ionization are determined and discussed. It is shown that there are two distinguishable pathways for the single ionization and four distinct pathways for the sequential double ionization. It is also shown that there are two and three different regions of space which are related to the single and double ionization respectively. In the second part of the paper, the time dependent Schr\"{o}dinger and Newton equations are solved simultaneously for the electrons and the nuclei of H2_2 respectively. The electrons and nuclei dynamics are separated on the base of the adiabatic approximation. The soft-core potential is used to model the electrostatic interaction between the electrons and the nuclei. A variety of wavelengths (390 nm, 532 nm and 780 nm) and intensities (5×10145\times10^{14} Wcm−2Wcm^{-2} and 5×1015 5\times10^{15} Wcm−2Wcm^{-2}) of the ultrashort intense laser pulses with a sinus second order envelope function are used. The behaviour of the time dependent classical nuclear dynamics in the absence and present of the laser field are investigated and compared. In the absence of the laser field, there are three distinct sections for the nuclear dynamics on the electronic ground state energy curve. The bond hardening phenomenon does not appear in this classical nuclear dynamics simulation.Comment: 16 pages, 7 figure

    Decellularization of human donor aortic and pulmonary valved conduits using low concentration sodium dodecyl sulfate

    Get PDF
    The clinical use of decellularised cardiac valve allografts is increasing. Long term data will be required to determine whether they outperform conventional cryopreserved allografts. Valves decellularised using different processes may show varied long-term outcomes. It is therefore important to understand the effects of specific decellularisation technologies on the characteristics of donor heart valves. Human cryopreserved aortic and pulmonary valved conduits were decellularised using hypotonic buffer, 0.1% (w/v) SDS and nuclease digestion. The decellularised tissues were compared to cellular cryopreserved valve tissues using histology, immunohistochemistry, quantitation of total DNA, collagen and glycosaminoglycan content, in vitro cytotoxicity assays, uniaxial tensile testing and subcutaneous implantation in mice. The decellularised tissues showed no histological evidence of cells or cell remnants and over 97% DNA removal in all regions (arterial wall, muscle, leaflet and junction). The decellularised tissues retained collagen IV and von Willebrand factor staining with some loss of fibronectin, laminin and chondroitin sulphate staining. There was an absence of MHC Class I staining in decellularised pulmonary valve tissues, with only residual staining in isolated areas of decellularised aortic valve tissues. The collagen content of the tissues was not decreased following decellularisation however the glycosaminoglycan content was reduced. Only moderate changes in the maximum load to failure of the tissues were recorded post-decellularisation. The decellularised tissues were non-cytotoxic in vitro, and were biocompatible in vivo in a mouse subcutaneous implant model. The decellularisation process will now be translated into a GMP compatible process for donor cryopreserved valves with a view to future clinical use

    In vitro biomechanical and hydrodynamic characterisation of decellularised human pulmonary and aortic roots

    Get PDF
    Background and purpose of the study: The use of decellularised biological heart valves in the replacement of damaged heart valves offers a promising solution to reduce the degradation issues associated with existing cryopreserved allografts. The purpose of this study was to assess the effect of low concentration sodium dodecyl sulphate decellularisation on the in vitro biomechanical and hydrodynamic properties of cryopreserved human aortic and pulmonary roots. Method: The biomechanical and hydrodynamic properties of cryopreserved decellularised human aortic and pulmonary roots were fully characterised and compared to cellular human aortic and pulmonary roots in an unpaired study. Following review of these results, a further study was performed to investigate the influence of a specific processing step during the decellularisation protocol (‘scraping’) in a paired comparison, and to improve the method of the closed valve competency test by incorporating a more physiological boundary condition. Results: The majority of the biomechanical and hydrodynamic characteristics of the decellularised aortic and pulmonary roots were similar compared to their cellular counterparts. However, several differences were noted, particularly in the functional biomechanical parameters of the pulmonary roots. However, in the subsequent paired comparison of pulmonary roots with and without decellularisation, and when a more appropriate physiological test model was used, the functional biomechanical parameters for the decellularised pulmonary roots were similar to the cellular roots. Conclusion: Overall, the results demonstrated that the decellularised roots would be a potential choice for clinical application in heart valve replacement

    Magnetic configurations in nanostructured Co2MnGa thin film elements

    Get PDF
    The magnetic configuration of nanostructured elements fabricated from thin films of the Heusler compound Co2MnGa was determined by high-resolution x-ray magnetic microscopy, and the magnetic properties of continuous Co2MnGa thin films were determined by magnetometry measurements. A four-fold magnetic anisotropy with an anisotropy constant of kJ m−3 was deduced, and x-ray microscopy measurements have shown that the nanostructured Co2MnGa elements exhibit reproducible magnetic states dominated by shape anisotropy, with a minor contribution from the magneto-crystalline anisotropy, showing that the spin structure can be tailored by judiciously choosing the geometry

    Assessing the Relative Performance of Nurses Using Data Envelopment Analysis Matrix (DEAM)

    Get PDF
    Assessing employee performance is one of the most important issue in healthcare management services. Because of their direct relationship with patients, nurses are also the most influential hospital staff who play a vital role in providing healthcare services. In this paper, a novel Data Envelopment Analysis Matrix (DEAM) approach is proposed for assessing the performance of nurses based on relative efficiency. The proposed model consists of five input variables (including type of employment, work experience, training hours, working hours and overtime hours) and eight output variables (the outputs are amount of hours each nurse spend on each of the eight activities including documentation, medical instructions, wound care and patient drainage, laboratory sampling, assessment and control care, follow-up and counseling and para-clinical measures, attendance during visiting and discharge suction) have been tested on 30 nurses from the heart department of a hospital in Iran. After determining the relative efficiency of each nurse based on the DEA model, the nurses’ performance were evaluated in a DEAM format. As results the nurses were divided into four groups; superstars, potential stars, those who are needed to be trained effectively and question marks. Finally, based on the proposed approach, we have drawn some recommendations to policy makers in order to improve and maintain the performance of each of these groups. The proposed approach provides a practical framework for hospital managers so that they can assess the relative efficiency of nurses, plan and take steps to improve the quality of healthcare delivery

    Metabolic engineering to simultaneously activate anthocyanin and proanthocyanidin biosynthetic pathways in Nicotiana spp

    Get PDF
    [EN] Proanthocyanidins (PAs), or condensed tannins, are powerful antioxidants that remove harmful free oxygen radicals from cells. To engineer the anthocyanin and proanthocyanidin biosynthetic pathways to de novo produce PAs in two Nicotiana species, we incorporated four transgenes to the plant chassis. We opted to perform a simultaneous transformation of the genes linked in a multigenic construct rather than classical breeding or retransformation approaches. We generated a GoldenBraid 2.0 multigenic construct containing two Antirrhinum majus transcription factors (AmRosea1 and AmDelila) to upregulate the anthocyanin pathway in combination with two Medicago truncatula genes (MtLAR and MtANR) to produce the enzymes that will derivate the biosynthetic pathway to PAs production. Transient and stable transformation of Nicotiana benthamiana and Nicotiana tabacum with the multigenic construct were respectively performed. Transient expression experiments in N. benthamiana showed the activation of the anthocyanin pathway producing a purple color in the agroinfiltrated leaves and also the effective production of 208.5 nmol (-) catechin/g FW and 228.5 nmol (-) epicatechin/g FW measured by the p-dimethylaminocinnamaldehyde (DMACA) method. The integration capacity of the four transgenes, their respective expression levels and their heritability in the second generation were analyzed in stably transformed N. tabacum plants. DMACA and phoroglucinolysis/HPLC-MS analyses corroborated the activation of both pathways and the effective production of PAs in T0 and T1 transgenic tobacco plants up to a maximum of 3.48 mg/g DW. The possible biotechnological applications of the GB2.0 multigenic approach in forage legumes to produce "bloatsafe" plants and to improve the efficiency of conversion of plant protein into animal protein (ruminal protein bypass) are discussed.This work was supported by grants BIO2012-39849-C02-01 and BIO2016-75485-R from the Spanish Ministry of Economy and Competitiveness (MINECO) (http://www.idi.mineco.gob.es/portal/site/MICINN) to LAC and a fellowship of the JAE-CSIC program to SF. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Fresquet-Corrales, S.; Roque Mesa, EM.; Sarrión-Perdigones, A.; Rochina, M.; López-Gresa, MP.; Díaz-Mula, HM.; Belles Albert, JM.... (2017). Metabolic engineering to simultaneously activate anthocyanin and proanthocyanidin biosynthetic pathways in Nicotiana spp. PLoS ONE. 12(9). https://doi.org/10.1371/journal.pone.0184839Se018483912

    D-galactose-induced brain ageing model:A systematic review and meta-analysis on cognitive outcomes and oxidative stress indices

    Get PDF
    Animal models are commonly used in brain ageing research. Amongst these, models where rodents are exposed to d-galactose are held to recapitulate a number of features of ageing including neurobehavioral and neurochemical changes. However, results from animal studies are often inconsistent. To better understand the characteristics of the model and effects of d-galactose on neurobehavioral and neurochemical outcomes in rodents we performed a systematic review and meta-analysis. We applied random-effects meta-analysis to evaluate the effect of study features. Our results give an overview of the characteristics of the d-galactose rodent ageing model, including neurobehavioral and neurochemical outcomes. We found that few studies took measures to reduce risks of bias, and substantial heterogeneity in the reported effects of d-galactose in included studies. This highlights the need for improvements in the use of the d-galactose rodent ageing model if it is to provide useful in the development of drugs to treat human ageing
    • …
    corecore