124 research outputs found
AI-2-dependent gene regulation in Staphylococcus epidermidis
© 2008 Li et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
Global Transcriptional Analysis of Spontaneous Sakacin P-Resistant Mutant Strains of Listeria monocytogenes during Growth on Different Sugars
Subclass IIa bacteriocins have strong antilisterial activity and can control the growth of Listeria monocytogenes in food. However, L. monocytogenes may develop resistance towards such bacteriocins. In this follow-up study, the transcriptomes of a high level (L502-1) and a low level (L502-6) spontaneous sakacin P-resistant mutant strain of L. monocytogenes were compared to the wild-type (L502). The growth of the resistant strains was reduced on mannose but not affected on cellobiose and the transcriptomics was performed during growth on these sugars. The mannose phosphotransferase system (PTS) encoded by the mptACD operon (mpt) is known for transporting mannose and also act as a receptor to class IIa bacteriocins. The mpt was repressed in L502-1 and this is in accordance with abolition of the bacteriocin receptor with resistance to class IIa bacteriocins. In contrast, the mpt was induced in L502-6. Despite the induction of the mpt, L502-6 showed 1,000 times more resistance phenotype and reduced growth on mannose suggesting the mannose-PTS may not be functional in L502-6. The microarray data suggests the presence of other transcriptional responses that may be linked to the sakacin P resistance phenotype particularly in L502-6. Most of commonly regulated genes encode proteins involved in transport and energy metabolism. The resistant strains displayed shift in general carbon catabolite control possibly mediated by the mpt. Our data suggest that the resistant strains may have a reduced virulence potential. Growth sugar- and mutant-specific responses were also revealed. The two resistant strains also displayed difference in stability of the sakacin P resistance phenotype, growth in the presence of both the lytic bacteriophage P100 and activated charcoal. Taken together, the present study showed that a single time exposure to the class IIa bacteriocin sakacin P may elicit contrasting phenotypic and transcriptome responses in L. monocytogenes possibly through regulation of the mpt
Use of molecular modelling to probe the mechanism of the nucleoside transporter NupG.
Nucleosides play key roles in biology as precursors for salvage pathways of nucleotide synthesis. Prokaryotes import nucleosides across the cytoplasmic membrane by proton- or sodium-driven transporters belonging to the Concentrative Nucleoside Transporter (CNT) family or the Nucleoside:H(+) Symporter (NHS) family of the Major Facilitator Superfamily. The high resolution structure of a CNT from Vibrio cholerae has recently been determined, but no similar structural information is available for the NHS family. To gain a better understanding of the molecular mechanism of nucleoside transport, in the present study the structures of two conformations of the archetypical NHS transporter NupG from Escherichia coli were modelled on the inward- and outward-facing conformations of the lactose transporter LacY from E. coli, a member of the Oligosaccharide:H(+) Symporter (OHS) family. Sequence alignment of these distantly related proteins (∼ 10% sequence identity), was facilitated by comparison of the patterns of residue conservation within the NHS and OHS families. Despite the low sequence similarity, the accessibilities of endogenous and introduced cysteine residues to thiol reagents were found to be consistent with the predictions of the models, supporting their validity. For example C358, located within the predicted nucleoside binding site, was shown to be responsible for the sensitivity of NupG to inhibition by p-chloromercuribenzene sulphonate. Functional analysis of mutants in residues predicted by the models to be involved in the translocation mechanism, including Q261, E264 and N228, supported the hypothesis that they play important roles, and suggested that the transport mechanisms of NupG and LacY, while different, share common features
Immune Responses to Plague Infection in Wild Rattus rattus, in Madagascar: A Role in Foci Persistence?
Plague is endemic within the central highlands of Madagascar, where its main reservoir is the black rat, Rattus rattus. Typically this species is considered susceptible to plague, rapidly dying after infection inducing the spread of infected fleas and, therefore, dissemination of the disease to humans. However, persistence of transmission foci in the same area from year to year, supposes mechanisms of maintenance among which rat immune responses could play a major role. Immunity against plague and subsequent rat survival could play an important role in the stabilization of the foci. In this study, we aimed to investigate serological responses to plague in wild black rats from endemic areas of Madagascar. In addition, we evaluate the use of a recently developed rapid serological diagnostic test to investigate the immune response of potential reservoir hosts in plague foci.We experimentally infected wild rats with Yersinia pestis to investigate short and long-term antibody responses. Anti-F1 IgM and IgG were detected to evaluate this antibody response. High levels of anti-F1 IgM and IgG were found in rats one and three weeks respectively after challenge, with responses greatly differing between villages. Plateau in anti-F1 IgM and IgG responses were reached for as few as 500 and 1500 colony forming units (cfu) inoculated respectively. More than 10% of rats were able to maintain anti-F1 responses for more than one year. This anti-F1 response was conveniently followed using dipsticks.Inoculation of very few bacteria is sufficient to induce high immune response in wild rats, allowing their survival after infection. A great heterogeneity of rat immune responses was found within and between villages which could heavily impact on plague epidemiology. In addition, results indicate that, in the field, anti-F1 dipsticks are efficient to investigate plague outbreaks several months after transmission
Alteration of the phospho- or neutral lipid content and fatty acid composition in Listeria monocytogenes due to acid adaptation mechanisms for hydrochloric, acetic and lactic acids at pH 5.5 or benzoic acid at neutral pH
This study provides a first approach to observe the effects on Listeria monocytogenes of cellular exposure to acid stress at low or neutral pH, notably how phospho- or neutral lipids are involved in this mechanism, besides the fatty acid profile alteration. A thorough investigation of the composition of polar and neutral lipids from L. monocytogenes grown at pH 5.5 in presence of hydrochloric, acetic and lactic acids, or at neutral pH 7.3 in presence of benzoic acid, is described relative to cells grown in acid-free medium. The results showed that only low pH values enhance the antimicrobial activity of an acid. We suggest that, irrespective of pH, the acid adaptation response will lead to a similar alteration in fatty acid composition [decreasing the ratio of branched chain/saturated straight fatty acids of total lipids], mainly originating from the neutral lipid class of adapted cultures. Acid adaptation in L. monocytogenes was correlated with a decrease in total lipid phosphorus and, with the exception of cells adapted to benzoic acid, this change in the amount of phosphorus reflected a higher content of the neutral lipid class. Upon acetic or benzoic acid stress the lipid phosphorus proportion was analysed in the main phospholipids present: cardiolipin, phosphatidylglycerol, phosphoaminolipid and phosphatidylinositol. Interestingly only benzoic acid had a dramatic effect on the relative quantities of these four phospholipids
Effects of temperature on the transmission of Yersinia Pestis by the flea, Xenopsylla Cheopis, in the late phase period
<p>Abstract</p> <p>Background</p> <p>Traditionally, efficient flea-borne transmission of <it>Yersinia pestis</it>, the causative agent of plague, was thought to be dependent on a process referred to as blockage in which biofilm-mediated growth of the bacteria physically blocks the flea gut, leading to the regurgitation of contaminated blood into the host. This process was previously shown to be temperature-regulated, with blockage failing at temperatures approaching 30°C; however, the abilities of fleas to transmit infections at different temperatures had not been adequately assessed. We infected colony-reared fleas of <it>Xenopsylla cheopis </it>with a wild type strain of <it>Y. pestis </it>and maintained them at 10, 23, 27, or 30°C. Naïve mice were exposed to groups of infected fleas beginning on day 7 post-infection (p.i.), and every 3-4 days thereafter until day 14 p.i. for fleas held at 10°C, or 28 days p.i. for fleas held at 23-30°C. Transmission was confirmed using <it>Y. pestis</it>-specific antigen or antibody detection assays on mouse tissues.</p> <p>Results</p> <p>Although no statistically significant differences in per flea transmission efficiencies were detected between 23 and 30°C, efficiencies were highest for fleas maintained at 23°C and they began to decline at 27 and 30°C by day 21 p.i. These declines coincided with declining median bacterial loads in fleas at 27 and 30°C. Survival and feeding rates of fleas also varied by temperature to suggest fleas at 27 and 30°C would be less likely to sustain transmission than fleas maintained at 23°C. Fleas held at 10°C transmitted <it>Y. pestis </it>infections, although flea survival was significantly reduced compared to that of uninfected fleas at this temperature. Median bacterial loads were significantly higher at 10°C than at the other temperatures.</p> <p>Conclusions</p> <p>Our results suggest that temperature does not significantly effect the per flea efficiency of <it>Y. pestis </it>transmission by <it>X. cheopis</it>, but that temperature is likely to influence the dynamics of <it>Y. pestis </it>flea-borne transmission, perhaps by affecting persistence of the bacteria in the flea gut or by influencing flea survival. Whether <it>Y. pestis </it>biofilm production is important for transmission at different temperatures remains unresolved, although our results support the hypothesis that blockage is not necessary for efficient transmission.</p
Integration of Evolutionary Features for the Identification of Functionally Important Residues in Major Facilitator Superfamily Transporters
The identification of functionally important residues is an important challenge for understanding the molecular mechanisms of proteins. Membrane protein transporters operate two-state allosteric conformational changes using functionally important cooperative residues that mediate long-range communication from the substrate binding site to the translocation pathway. In this study, we identified functionally important cooperative residues of membrane protein transporters by integrating sequence conservation and co-evolutionary information. A newly derived evolutionary feature, the co-evolutionary coupling number, was introduced to measure the connectivity of co-evolving residue pairs and was integrated with the sequence conservation score. We tested this method on three Major Facilitator Superfamily (MFS) transporters, LacY, GlpT, and EmrD. MFS transporters are an important family of membrane protein transporters, which utilize diverse substrates, catalyze different modes of transport using unique combinations of functional residues, and have enough characterized functional residues to validate the performance of our method. We found that the conserved cores of evolutionarily coupled residues are involved in specific substrate recognition and translocation of MFS transporters. Furthermore, a subset of the residues forms an interaction network connecting functional sites in the protein structure. We also confirmed that our method is effective on other membrane protein transporters. Our results provide insight into the location of functional residues important for the molecular mechanisms of membrane protein transporters
Expression during Host Infection and Localization of Yersinia pestis Autotransporter Proteins
Yersinia pestis CO92 has 12 open reading frames encoding putative conventional autotransporters (yaps), nine of which appear to produce functional proteins. Here, we demonstrate the ability of the Yap proteins to localize to the cell surface of both Escherichia coli and Yersinia pestis and show that a subset of these proteins undergoes processing by bacterial surface omptins to be released into the supernatant. Numerous autotransporters have been implicated in pathogenesis, suggesting a role for the Yaps as virulence factors in Y. pestis. Using the C57BL/6 mouse models of bubonic and pneumonic plague, we determined that all of these genes are transcribed in the lymph nodes during bubonic infection and in the lungs during pneumonic infection, suggesting a role for the Yaps during mammalian infection. In vitro transcription studies did not identify a particular environmental stimulus responsible for transcriptional induction. The primary sequences of the Yaps reveal little similarity to any characterized autotransporters; however, two of the genes are present in operons, suggesting that the proteins encoded in these operons may function together. Further work aims to elucidate the specific functions of the Yaps and clarify the contributions of these proteins to Y. pestis pathogenesis
Yersinia adhesins: an arsenal for infection
The Yersiniae are a group of Gram-negative coccobacilli inhabiting a wide range of habitats. The genus harbours three recognised human pathogens: Y. enterocolitica and Y. pseudotuberculosis, which both cause gastrointestinal disease, and Y. pestis, the causative agent of plague. These three organisms have served as models for a number of aspects of infection biology, including adhesion, immune evasion, evolution of pathogenic traits, and retracing the course of ancient pandemics. The virulence of the pathogenic Yersiniae is heavily dependent on a number of adhesin molecules. Some of these, such as the Yersinia adhesin A and invasin of the enteropathogenic species, and the pH 6 antigen of Y. pestis, have been extensively studied. However, genomic sequencing has uncovered a host of other adhesins present in these organisms, the functions of which are only starting to be investigated. Here, we review the current state of knowledge on the adhesin molecules present in the Yersiniae, their functions and putative roles in the infection process
Changes in cell surface and metabolism associated with strains of Listeria monocytogenes displaying different sensitivities to class IIa bacteriocins
Thesis (PhD)--Stellenbosch University, 2003.ENGLISH ABSTRACT: The possible use of the bacterially produced antimicrobial peptides, and in particular class IIa
bacteriocins as food preservatives is a motivating factor in studies on resistance to them by
food-borne pathogens like Listeria monocytogenes. The high frequencies of resistance to class
Ha bacteriocins have however sparked concern regarding their adequacy as potential biopreservatives.
Activity of these cationic peptides was reported to occur by membrane
permeabilisation due to pore formation, which results in the leakage of the intracellular
contents followed by cell death. The cell envelope (cell wall and cell membrane) is therefore
envisaged as a key site of modification in suscepti bility of bacteria to class Ha bacteriocins.
Mutants of the L. monocytogenes 873 isolate, resistant to the class IIa bacteriocin, leucocin A,
were generated at the start of the study to complement the existing array of L. monocytagenes
wild-type and resistant isolates obtained from other sources. The fifty percent inhibitory
concentrations using a highly sensitive and reproducible bioassay were determined. This
allowed categorisation of the mutants into intermediate and highly resistant phenotypes.
Analysis of the growth patterns of all these strains showed decreased growth rates and higher
growth yields for all the resistant strains in general. This provided evidence for possible
effects of membrane adaptation and metabolic changes in the resistant strains and prompted
further investigation. The major focus of the study on the class Ha resistant mutants were: (1)
analysis of membrane compositional changes and factors influencing cell surface charge; (2)
assessment of physical changes in the membrane and bacteriocin itself using circular
dichroism and fourier transform infrared spectroscopy; (3) and, determination of changes in
glucose metabolism.
Electrospray mass spectrometry analysis of the major listerial phospholipid,
phosphatidylglycerol, revealed that membranes of resistant strains had increased levels of
unsaturated and short-acyl-chain phosphatidylglycerol molecular species, indicating more
fluid membranes. In addition, treatment with a desaturase inhibitor resulted in increased
sensitivity of only the intermediate resistant strains to the class na bacteriocin, leucocin A.
This indicated the influence of membrane adaptation in only lower levels of resistance. It is
conceivable that more fluid membranes could also impact on decreased stability of pore
formation by the bacteriocin.
Complementary biophysical studies using fourier transform infrared spectroscopy indicated
the possible occurrence of greater membrane fluidity of resistant cells, by the notable shift in the anti symmetric CH2 stretching vibration from 2921 cm-I to 2922 cm-I. Additionally,
circular dichroism revealed a decreased a-helical and increased random structure of leucocin
A in the presence of listerial liposomes derived from highly resistant cell membrane extracts.
It is possible that this may result in reduced activity of the bacteriocin in resistant cell
membranes as a-helical stucture is a critical feature for membrane insertion of cationic
antimicrobial peptides.
Cell surface charge was determined by quantification of alanine and lysine esterification of
the anionic cell surface polymer, teichoic acid, and membrane phospholipids respectively.
Increased D-alanine, which causes neutralisation of the cell surface, was observed in all
resistant cells. A tendency for greater lysine content in membrane phospholipids, which also
impacts on neutralisation of the anionic phospholipid of listerial membranes, was observed in
highly resistant strains only. This neutralisation of the negative charge of the cell surface may
interfere with initial electrostatic interaction of bacteriocin with the cell, and subsequent
interactions required for permeabilisation of the cell membrane. These differences in alanine
and lysine esterification were not the result of increased expression of certain associated genes
(d/tA and /mo1695) and may be the result of post-transcriptional regulation. It was, however,
found that all resistant L. monocytogenes strains, including the intermediate resistant strains,
exhibited decreased expression of a putative docking molecule, the mannose-specific
phosphotransferase system EIIAB subunit (EIlABMan).A clear correlation existed between the
levels of resistance and EIIABMandown-regulation.
Finally, analysis of the glucose metabolism in highly resistant and wild-type strains, indicated
a more efficient metabolism with regards to higher growth yields and ATP yield, in contrast to
a lower specific growth rate in a spontaneous and genetically defined (EIlABMan inactivated)
highly resistant mutant. The switch in metabolic end-product observed, was attributed to the
loss of the glucose transporter, EIlABMan,and may cast doubts on the feasibility of the use of
class Ha bacteriocins as food preservatives in light of a stable and efficient resistant
phenotype.AFRIKAANSE OPSOMMING:
Sien volteks vir opsommin
- …