106 research outputs found

    Modelling Clock Synchronization in the Chess gMAC WSN Protocol

    Get PDF
    We present a detailled timed automata model of the clock synchronization algorithm that is currently being used in a wireless sensor network (WSN) that has been developed by the Dutch company Chess. Using the Uppaal model checker, we establish that in certain cases a static, fully synchronized network may eventually become unsynchronized if the current algorithm is used, even in a setting with infinitesimal clock drifts

    A Soluble Guanylate Cyclase–Dependent Mechanism Is Involved in the Regulation of Net Hepatic Glucose Uptake by Nitric Oxide in Vivo

    Get PDF
    OBJECTIVE We previously showed that elevating hepatic nitric oxide (NO) levels reduced net hepatic glucose uptake (NHGU) in the presence of portal glucose delivery, hyperglycemia, and hyperinsulinemia. The aim of the present study was to determine the role of a downstream signal, soluble guanylate cyclase (sGC), in the regulation of NHGU by NO. RESEARCH DESIGN AND METHODS Studies were performed on 42-h–fasted conscious dogs fitted with vascular catheters. At 0 min, somatostatin was given peripherally along with 4× basal insulin and basal glucagon intraportally. Glucose was delivered at a variable rate via a leg vein to double the blood glucose level and hepatic glucose load throughout the study. From 90 to 270 min, an intraportal infusion of the sGC inhibitor 1H-[1,2,4] oxadiazolo[4,3-a] quinoxalin-1-one (ODQ) was given in −sGC (n = 10) and −sGC/+NO (n = 6), whereas saline was given in saline infusion (SAL) (n = 10). The −sGC/+NO group also received intraportal SIN-1 (NO donor) to elevate hepatic NO from 180 to 270 min. RESULTS In the presence of 4× basal insulin, basal glucagon, and hyperglycemia (2× basal ), inhibition of sGC in the liver enhanced NHGU (mg/kg/min; 210–270 min) by ∼55% (2.9 ± 0.2 in SAL vs. 4.6 ± 0.5 in −sGC). Further elevating hepatic NO failed to reduce NHGU (4.5 ± 0.7 in −sGC/+NO). Net hepatic carbon retention (i.e., glycogen synthesis; mg glucose equivalents/kg/min) increased to 3.8 ± 0.2 in −sGC and 3.8 ± 0.4 in −sGC/+NO vs. 2.4 ± 0.2 in SAL (P < 0.05). CONCLUSIONS NO regulates liver glucose uptake through a sGC-dependent pathway. The latter could be a target for pharmacologic intervention to increase meal-associated hepatic glucose uptake in individuals with type 2 diabetes

    Verification of a distributed summation algorithm

    Get PDF
    A correctness proof of a variant of Segall's Propagation of Information with Feedback protocol is presented. The proof, which is carried out within the I/O automata model of Lynch and Tuttle, is standard except for the use of a prophecy variable. The aim of this paper is to show that, unlike what has been suggested in the literature, assertional methods based on invariant reasoning support an intuitive way to think about and understand this algorithm

    cGMP-Dependent Protein Kinase I Is Crucial for Angiogenesis and Postnatal Vasculogenesis

    Get PDF
    Background Endothelium-derived nitric oxide plays an important role for the bone marrow microenvironment. Since several important effects of nitric oxide are mediated by cGMP-dependent pathways, we investigated the role of the cGMP downstream effector cGMP-dependent protein kinase I (cGKI) on postnatal neovascularization. Methodology/Principal Findings In a disc neovascularization model, cGKI -/- mice showed an impaired neovascularization as compared to their wild-type (WT) littermates. Infusion of WT, but not cGKI -/- bone marrow progenitors rescued the impaired ingrowth of new vessels in cGKI-deficient mice. Bone marrow progenitors from cGKI -/- mice showed reduced proliferation and survival rates. In addition, we used cGKI alpha leucine zipper mutant (LZM) mice as model for cGKI deficiency. LZM mice harbor a mutation in the cGKI alpha leucine zipper that prevents interaction with downstream signaling molecules. Consistently, LZM mice exhibited reduced numbers of vasculogenic progenitors and impaired neovascularization following hindlimb ischemia compared to WT mice. Conclusions/Significance Our findings demonstrate that the cGMP-cGKI pathway is critical for postnatal neovascularization and establish a new role for cGKI in vasculogenesis, which is mediated by bone marrow-derived progenitors
    corecore