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Abstract

A correctness proof of a variant of Segall�s Propagation of Information with Feedback protocol is presented�

The proof� which is carried out within the I�O automata model of Lynch and Tuttle� is standard except for

the use of a prophecy variable� The aim of this paper is to show that� unlike what has been suggested in

the literature� assertional methods based on invariant reasoning support an intuitive way to think about and

understand this algorithm�
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�� Introduction

Reasoning about distributed algorithms appears to be intrinsically di�cult and will probably
always require a great deal of ingenuity� Nevertheless� research on formal veri�cation has
provided a whole range of well�established concepts and techniques that may help us to
tackle problems in this area� It seems that by now the basic principles for reasoning about
distributed algorithms have been discovered and that the main issue that remains is the
problem of scale� we know how to analyze small algorithms but are still lacking methods and
tools to manage the complexity of the the bigger ones�

Not everybody agrees with this view� however� and frequently one can hear claims that
existing approaches cannot deal in a �natural	 way with certain types of distributed algo�
rithms� A new approach is then proposed to address this problem� A recent example of this
is a paper by Chou 
��� who o
ers a rather pessimistic view on the state�of�the�art in formal
veri�cation�

At present� reasoning about distributed algorithms is still an ad hoc� trial�and�
error process that needs a great deal of ingenuity� What is lacking is a practical
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method that supports� on the one hand� an intuitive way to think about and
understand distributed algorithms and� on the other hand� a formal technique for
reasoning about distributed algorithms using that intuitive understanding�

In his paper� Chou proposes an extension of the assertional methods of 
�� �� �� �� ��� ��� ����
and argues that this extension allows for a more direct formalization of intuitive� operational
reasoning about distributed algorithms� To illustrate his method� Chou discusses a variant
of Segall	s PIF �Propagation of Information with Feedback� protocol 
���� A complex and
messy proof of this algorithm using existing methods is contrasted with a slightly simpler but
de�nitely more structured proof based on the new method�

Is the process of using assertional methods based on invariant reasoning ad hoc� Per�
sonally� I believe it is not� On the contrary� I �nd that these methods provide signi�cant
guidance and structure to veri�cations� After one has described both the algorithm and
its speci�cation as abstract programs� it is usually not so di�cult to come up with a �rst
guess of a simulation relation from the state space of the algorithm to the state space of the
speci�cation� In order to state this simulation� it is sometimes necessary to add auxiliary
history and prophecy variables to the low�level program� By just starting to prove that the
guessed simulation relation is indeed a simulation� i�e�� that for each execution of the low�level
program there exists a corresponding execution of the high�level program� one discovers the
need for certain invariants� properties that are valid for all reachable states of the programs�
To state these invariant properties it is sometimes convenient or even necessary to introduce
auxiliary state variables� Frequently one also has to prove other auxiliary invariants �rst�
The existence of a simulation relation guarantees that the algorithm is safe with respect to
the speci�cation� all the �nite behaviors of the algorithm are allowed by the speci�cation�
The concepts of invariants� history and prophecy variables� and simulation relations are so
powerful that in most cases they allow one to formalize the intuitive reasoning about safety
properties of distributed algorithms� When a simulation �and thereby safety� has been es�
tablished� this simulation often provides guidance in the subsequent proof that the algorithm
satis�es the required liveness properties� typically one proves that the simulation relates each
fair execution of the low�level program to a fair execution of the high�level program� Here
modalities from temporal logic such as �eventually� and �leads to� often make it quite easy
to formalize intuitions about the liveness properties of the algorithm�

As an illustration of the use of existing assertional methods� I present in this paper a
veri�cation within the I�O automata model 
��� ��� of the algorithm discussed by Chou 
���
Altogether� it took me about two hours to come up with a sketch of the proof �during a train
ride from Leiden to Eindhoven�� and about three weeks to work it out� polish it� and write
this paper� The proof is routine� except for a few nice invariants and the use of a prophecy
variable� Unlike history variables� which date back to the sixties 
���� prophecy variables
have been introduced only recently 
��� and there are not that many examples of their use�
My proof is not particularly short� but it does formalize in a direct way my own intuitions
about the behavior of this algorithm� It might very well be the case that for more complex
distributed algorithms new methods� such as the one of Chou 
��� will pay o
 and lead to
shorter proofs that are closer to intuition� This paper shows that invariant based assertional
methods still work very well for a variant of Segall	s PIF protocol�



�� Description of the Algorithm �

The structure of this paper is as follows� Section � describes the algorithm formally as an
I�O automaton� Section � presents the correctness criterion and the proof that the algorithm
meets this criterion� Finally� Section � contains some conclusing remarks� Appendix A gives
a brief account of those parts of I�O automata theory that are used in this paper�

�� Description of the Algorithm
We consider a graph G � �V�E�� where V is a nonempty� �nite collection of nodes and
E � V�V is a collection of links� We assume that graph G is undirected in the sense that
�v� w� � E � �w� v� � E� and connected� To each node v in the graph a value weight�v� is
associated� taken from some setM� We assume thatM contains an element � and that there
is a binary operator � on M� such that �M��� �� is an Abelian monoid��

Nodes of G represent autonomous processors and links represent communication channels
via which these processors can send messages to each other� We assume that the communica�
tion channels are reliable and that messages are received in the same order as they are sent�
We discuss a simple distributed algorithm to compute the sum of the weights of all the nodes
in the network� The algorithm is a minor� rephrasing of an algorithm described by Chou

��� which in turn is a variant of Segall	s PIF �Propagation of Information with Feedback�
protocol 
����

The only messages that are required by the algorithm are elements from M� A node in
the network enters the protocol when it receives a �rst message from one of its neighbors�
Initially� the communication channels for all the links are empty� except the channel associated
to the link e� from a �xed root node v� to itself� which contains a single message�� When an
arbitrary node v receives a �rst message� it marks the node w from which this message was
received� It then sends a � message to all its neighbors� except w� Upon receiving subsequent
messages� the values of these messages are added to the weight of v� As soon as� for a non�root
node� the total number of received messages equals the total number of neighbors� the value
that has been computed is sent back to the node from which the �rst message was received�
When� for root node v�� the total number of received messages equals the total number of
neighbors� the value that has been computed by v� is produced as the �nal outcome of the
algorithm�

In Figure �� the algorithm is speci�ed as an I�O automaton DSum using the standard
precondition�e
ect notation 
��� ��� ��� A minor subtlety is the occurrence of the variable v
in the de�nition of the step relation� which is neither a state variable nor a formal parameter
of the actions� Semantically� the meaning of v is determined by an implicit existential quan�
ti�cation� an action a is enabled in a state s if there exists a valuation � of all the variables
�including v� that agrees with s on the state variables and with a on the parameters of the
actions� such that the precondition of a holds under �� If action a is enabled in s under �
then the e
ect part of a and � determine the resulting state s��

For each link e��v� w�� the source v is denoted source�e�� the target w is denoted target�e��

�So� for all m�m
�
�m

��
�M� m�m

� � m
� �m� m� �m� �m

��� � �m�m
�� �m

�� and m� � � � �m �m�
�The unit element � of the monoid is used where Chou 	
� uses a special Start message�
�The assumption that e� � �v�� v�� � E is not required� but allows for a more uniform description of the

algorithm for each node�
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Internal� MSG

REPORT

Output� RESULT

State Variables� busy � V� Bool

par � V� E

total � V �M

cnt � V� Int

mq � E�M�

Init� � �v � �busy�v�
� �e � mq �e� � if e�e� then append��� empty� else empty

MSG �e � E�m �M�
Precondition�

v � target�e� �m � head�mq �e��
E�ect�

mq �e� �� tail�mq �e��
if �busy �v� then busy �v� �� true

par �v� �� e
total �v� �� weight�v�
cnt �v� �� size�to�v�� � �
for f � from�v��fe��g do mq �f � �� append���mq�f ��

else total �v� �� total �v� 	m
cnt �v� �� cnt �v�� �

REPORT �e � E�m �M�
Precondition�

v � source�e� �� v� � busy �v� � cnt �v� � � � e�� � par �v��m � total �v�
E�ect�

busy �v� �� false

mq �e� �� append�m�mq �e��

RESULT �m �M�
Precondition�

busy �v�� � cnt �v�� � � �m � total �v��
E�ect�

busy �v�� �� false

Figure �� I�O automaton DSum �



	� Correctness Proof �

and the reverse link �w� v� is denoted e��� For each node v� from�v� gives the set of links
with source v and to�v� gives the set of links with target v� so e�from�v� � source�e��v
and e�to�v� � target�e��v� All the other data types and operation symbols used in the
speci�cation have the obvious meaning� The states of DSum are interpretations of �ve state
variables in their domains� Four of these variables represent the values of program variables
at each node�

� busy tells for each node whether or not it is currently participating in the protocol�
initially busy 
v� � false for each v�

� par is used to remember the link via which a node has been activated�

� total records the sum of the values seen by a node during a run of the protocol�

� cnt gives the number of values that a node still wants to see before it will terminate�

The �fth state variablemq represents the contents of the message queue for each link� Initially�
mq 
e� is empty for each link e except e��

I�O automaton DSum has three �parametrized� actions� ��� MSG� which describes the
receipt and processing of a message� ��� REPORT � by which a non root node sends the �nal
value that it has computed to its parent� and ��� RESULT � which is used by the root node to
deliver the �nal result of the computation� The partition of DSum contains an equivalence
class Bv for each node v� which gives all the actions in which node v participates�

Bv�
�
� fMSG�e�m� j e � to�v��� m �Mg � fRESULT�m� jm �Mg

and� for v �� v��

Bv
�
� fMSG�e�m� j e � to�v�� m �Mg � fREPORT�e�m� j e � from�v�� m �Mg

Actually� since it will turn out that DSum only has �nite executions� it does not matter how
we de�ne the partition of DSum� The above de�nition seems to be the most natural� since it
re ects the intuition that each node in the network represents an autonomous processor�

�� Correctness Proof

��� Correctness Criterion

The correctness property that we want to establish is that the fair traces of DSum are
contained in those of the I�O automaton S of Figure �� I�O automaton S is extremely simple�
It has only two states� an initial state where done�false and a �nal state where done�true�
There is one step� which starts in the initial state� has label RESULT�

P
v�V weight�v��� and

ends in the �nal state� Finally� part�S� contains a single equivalence class fRESULT�m� j
m �Mg�
We will prove traces�DSum� � traces�S� using a standard recipe of Abadi and Lamport 
���

�rst we establish a history relation fromDSum to an I�O automatonDSumh � then a prophecy
relation from DSumh to an I�O automaton DSumhp � and �nally a re�nement from DSumhp

to S� The fact that traces�DSum� � traces�S� does not guarantee that fairtraces�DSum� �
fairtraces�S�� In order to prove this� we will show that DSum has no in�nite sequence of
consecutive internal actions and cannot get into a state of deadlock before an output step
has been performed�
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Output� RESULT

State Variables� done � Bool

Init� �done

RESULT �m �M�
Precondition�

�done �m �
P

v�V weight�v�
E�ect�

done �� true

Figure �� I�O automaton S�

��� Adding a History Variable

As observed by Segall 
���� a crucial property of the PIF protocol is that in each maximal
execution exactly one message travels on each link� As a �rst step towards the proof of
this property� we will establish that in each execution of DSum at most one message travels
on each link� In order to state this formally as an invariant� we add a variable rcvd to
automaton DSum that records for each link e how many messages have been received on e�
This variable is similar to the variable N that Segall 
��� uses in his presentation of PIF to
mark the receipt of a message over a link� Figure � describes the automatonDSumh obtained
in this way� Boxes highlight the places where DSumh di
ers from DSum� Variable rcvd is
an auxiliary�history variable in the sense of Owicki and Gries 
��� because it does not occur
in conditions nor at the right�hand�side of assignments to other variables� Clearly� adding
rcvd does not change the behavior of automaton DSum � This can be formalized via the
following trivial result �Here a strong history relation is a relation on states whose inverse is
a functional strong bisimulation� See Appendix A�� for the de�nition���

Theorem � The inverse of the projection function that maps states from DSumh to states
of DSum is a strong history relation from DSum to DSumh �

We will use a state function Sent�e� to denote the number of messages sent over a link
e� and a state function Rcvd�v� to denote the number of messages received by a node v�
Formally� these functions are de�ned by�

Sent�e�
�
� rcvd 
e� � len�mq 
e��

Rcvd�v�
�
�
P

e�to�v� rcvd 
e�

Invariant I below gives some basic sanity properties involving rcvd 
e� and Rcvd�v�� at any
time the number of messages received from a link is nonnegative� if a node is busy then it
has received at least one message� and as soon as at least one message has been received by
a node� a message has been received over the parent link� which points towards that node�
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Internal� MSG

REPORT

Output� RESULT

State Variables� busy � V� Bool

par � V� E

total � V �M

cnt � V� Int

mq � E�M�

rcvd � E� Int

Init� � �v � �busy�v�
� �e � mq �e� � if e�e� then append��� empty� else empty

� �e � rcvd �e� � �

MSG �e � E�m �M�
Precondition�

v � target�e� �m � head�mq �e��
E�ect�

mq �e� �� tail�mq �e��

rcvd �e� �� rcvd �e� 	 �

if �busy �v� then busy �v� �� true

par �v� �� e
total �v� �� weight�v�
cnt �v� �� size�to�v�� � �
for f � from�v��fe��g do mq �f � �� append���mq�f ��

else total �v� �� total �v� 	m
cnt �v� �� cnt �v�� �

REPORT �e � E�m �M�
Precondition�

v � source�e� �� v� � busy �v� � cnt �v� � � � e�� � par �v��m � total �v�
E�ect�

busy �v� �� false

mq �e� �� append�m�mq �e��

RESULT �m �M�
Precondition�

busy �v�� � cnt �v�� � � �m � total �v��
E�ect�

busy �v�� �� false

Figure �� I�O automaton DSumh obtained from DSum by adding history variable rcvd �
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Lemma � Let I be the conjunction� for all v and e� of the following properties�

I��e�
�
� rcvd 
e� � �

I��v�
�
� busy 
v� 	 Rcvd�v� � �

I��v�
�
� Rcvd�v� � � 	 par 
v� � to�v�
 rcvd 
par 
v�� � �

Then I holds for all reachable states of DSumh �

The real work starts with the proof of the next invariant I �� which is the conjunction� for
all v� of the following formulas�

I��v�
�
� Init�v�� busy 
v��Done�v�

I�
�
� Init�v�� 	 Init�DSumh�

I	�v�
�
� v �� v� 
 Init�v� 	 �e � from�v� � Sent�e� � �

I
�v�
�
� 
Init�v� 	 �e � from�v��fpar
v���g � Sent�e� � �

I�
�
� 
Init�v�� 	 par �v�� � e� 
 Sent�e�� � �

I��v�
�
� v �� v� 
 busy 
v� 	 Sent�par 
v���� � �

I���v�
�
� v �� v� 
Done�v� 	 Sent�par 
v���� � �

I���v�
�
� 
Init�v� 	 cnt 
v� � Rcvd�v� � size�to�v��

in which the following state functions are used�

Init�v�
�
� �e � to�v� � rcvd 
e� � �

Done�v�
�
� 
busy 
v�
 �e � to�v� � rcvd 
e� � �

Even though at �rst sight formula I � may look complicated� it is easy to give intuition for it�
As long as a node v has not received any message� it does not participate is the protocol and is
in state Init�v�� Upon arrival of a �rst message� the node changes status and moves to busy 
v��
The node remains in this state until it has received a message from all its neighbors� then
performs a REPORT or RESULT action� and moves to its �nal state Done�v�� The following
�mutual exclusion� property is a logical consequence of invariant I� and the de�nition of state
functions Init and Done� and therefore holds for all reachable states of DSumh �

ME�v�
�
� 
�Init�v� 
 busy 
v��
 
�Init�v�
 Done�v��
 
�busy 
v�
 Done�v��

Together with formula I��v�� ME�v� says that in any reachable state each node is in exactly
one of the three states Init�v�� busy 
v� or Done�v�� Formulas I��I�� specify� for each node v�
for each of the three possible states of v� and for each outgoing link of v� how many messages
have been sent over that link� And since this number is always either � or �� this implies that
during each execution at most one message can be sent over each link �formula C� below�� In
order to make the induction work� a �nal conjunct I�� is needed in I � that says that� except
for the initial state of v� cnt 
v� gives the total number of links over which no message has
yet been received by v� In the routine proof that I � is an invariant� it is convenient to use
the logical consequences C��C� of I 
 I � that are stated in Lemma �� Properties C��C
 of
Lemma � are also logical consequences of I 
 I �� and will play a role later on in this paper�

Lemma � For all v and e� the following formulas are logical consequences of I 
 I � and the
de�nitions of the state functions�



	� Correctness Proof �

C��e�
�
� Sent�e� � �

C��v�
�
� ��e � to�v� � rcvd 
e� � �� � Rcvd�v� � size�to�v��

C��e�
�
� mq 
e� �� empty 
 
busy 
target�e�� 	 Init�target�e��

C��e�
�
� e �� e� 
mq 
e� �� empty 	 
Init�source�e��

C��v�
�
� 
Init�v� 	 
Init�source�par 
v���

C	�e�
�
� Init�target�e��
mq 
e� � empty 	 Init�source�e��

C
�v�
�
� v �� v� 
 
Init�v�
 Sent�par 
v���� � � 	 Done�v�

Lemma � Property I � holds for all reachable states of DSumh �

��� Adding a Prophecy Variable

Intuitively� in the �rst phase of the algorithm a spanning tree is constructed with root v��
and this spanning tree is used to accumulate values in the second phase� When the algorithm
starts� it not clear how the spanning tree is going to look like and in fact any spanning tree
is still possible� While the algorithm proceeds� the spanning tree is constructed step by step�
The choice whether an arbitrary link will be part of the spanning tree depends on the relative
speeds of the processors� and is entirely nondeterministic� Such unpredictable� nondetermin�
istic behavior is typical for distributed computation but often complicates analysis�
Fortunately� the concept of a prophecy variable of Abadi and Lamport 
�� allows us to reduce

the nondeterminism of the algorithm or� more precisely� to push nondeterminism backwards
to the initial state� We add to DSumh a new variable tree� which records an initial guess of
the spanning tree and enforces �as a self�ful�lling prophecy� that the actual spanning tree
that is constructed during execution is equal to this initial guess� Figure � describes the
automaton DSumhp obtained in this way� Boxes highlight the places where DSumhp di
ers
from DSumh � In Figure �� tree is a function that tells for each set of links whether or not it
is a tree� More formally� for E � E and V � fsource�e�� target�e� j e � Eg� tree�E� � true i

either E � � or there exists a node v � V such that for all v� � V there is a unique path of
links in E leading from v to v��
In order to show that tree is a prophecy variable in the sense of 
�� ���� we establish a

prophecy relation from DSumh to DSumhp �see Appendix A�� for the de�nition�� For this�
we need two trivial invariants and two further lemmas�

Lemma � For all reachable states of DSumhp and for all v�

T��v�
�
� 
Init�v� 	 par 
v� � tree
v�

Lemma � For all reachable states of DSumhp �

T�
�
� tree
v�� � e� 
 ��v � v � target�tree
v���
 tree�ftree
v� j v � V�fv�gg�

Lemma � De�ne T
�
� �v � T��v�
 T� and let � be the projection function that maps states

of DSumhp to states of DSumh � Suppose a is an action and u and u� are states of DSumhp

such that

�� u�tree � u��tree�

�� u� j� T�
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Internal� MSG

REPORT

Output� RESULT

State Variables� busy � V� Bool

par � V� E

total � V �M

cnt � V� Int

mq � E�M�

rcvd � E� Int

tree � V� E

Init� � �v � �busy �v�
� �e � mq �e� � if e�e� then append��� empty� else empty

� �e � rcvd �e� � �

� tree�v�� � e� � ��v � v � target�tree�v��� � tree�ftree�v� j v � V�fv�gg�

MSG�e � E�m �M�
Precondition�

v � target�e� �m � head�mq �e�� � �busy �v� � e � tree�v��

E�ect�
mq�e� �� tail�mq �e��
rcvd �e� �� rcvd �e� 	 �
if �busy �v� then busy �v� �� true

par �v� �� e
total �v� �� weight�v�
cnt �v� �� size�to�v�� � �
for f � from�v��fe��g do mq �f � �� append���mq�f ��

else total �v� �� total �v� 	m
cnt �v� �� cnt �v�� �

REPORT �e � E�m �M�
Precondition�

v � source�e� �� v� � busy �v� � cnt �v� � � � e�� � par �v� �m � total �v�
E�ect�

busy �v� �� false

mq�e� �� append�m�mq �e��

RESULT �m �M�
Precondition�

busy �v�� � cnt �v�� � � �m � total �v��
E�ect�

busy �v�� �� false

Figure �� I�O automaton DSumhp obtained from DSumh by adding prophecy variable tree�
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�� ��u�
a
	 ��u�� is a step of DSumh �

	� ��u� is reachable�

Then u
a
	 u� is a step of DSumhp and u j� T�

Proof� Since u�tree � u��tree and u� j� T�� also u j� T�� In order to show the remaining
properties� we distinguish between three cases�
��� u j� 
busy 
v� and a � MSG�e�m�� for some v� e and m with v � target�e��
Since ��u�

a
	 ��u��� it follows by C� that ��u� j� Init�v� and therefore u j� T��v�� Because

u� j� 
Init�v� and u� j� T��v�� e � ��u���par 
v� � u��par 
v� � u��tree
v� � u�tree
v�� Thus
u

a
	 u�� Clearly� u j� T��w� for w �� v� because u� j� T��w� and because a does not change

the relevant variables�
��� u j� busy 
v� and a � MSG�e�m�� for some v� e and m with v � target�e��
Then u

a
	 u�� Also ��u��par 
v� � ��u���par 
v� and ��u�� j� busy 
v�� By the mutual exclusion

property ME�v�� u� j� 
Init�v�� Because u� j� T��v�� u
��par 
v� � u��tree
v�� Hence

u�par 
v� � ��u��par 
v� � ��u���par 
v� � u��par 
v� � u��tree
v� � u�tree
v��

This implies u j� T��v�� Finally we observe that u j� T��w� for w �� v� because u� j� T��v�
and because a does not change the relevant variables�
��� For all e and m� a �� MSG�e�m��
Then u

a
	 u�� Also� u j� �v � T��v� because u� j� �v � T��v� and because a does not change

any of the relevant variables� �

Lemma 	 Suppose u is a state of DSumhp such that ��u� is reachable and u j� T� Then u
is reachable�

Proof� Let s�
a�	 s�

a�	 � � �
an	 sn be an execution of DSumh that ends in ��u�� Let� for

� � i � n� ui be the state of DSum
hp de�ned by ��ui� � si and ui�tree � u�tree� Repeated

application of Lemma � now gives that DSumhp has steps u�
a�	 u�

a�	 � � �
an	 un � u and�

for all i� ui j� T � Since ��u�� is a start state of DSumh and u� j� T�� u� is a start state of
DSumhp � and thus u is reachable� �

Theorem 
 The inverse of projection function � is a strong image
�nite prophecy relation
from DSumh to DSumhp �

Proof� Mapping � is trivially a strong re�nement from DSumhp to DSumh � Note that as a
direct corollary of this fact� all invariants of DSumh are also invariants of DSumhp � Since the
domain of variable tree is �nite� ��� is image��nite� We prove that ��� satis�es the three
conditions of a backward simulation �condition �b� in the strong sense��
For condition �a�� suppose that s is a start state of DSumh and u is a reachable state of

DSumhp with ��u� � s� By Lemma �� u j� T�� Hence u is a start state of DSumhp �
For condition �b�� suppose that s

a
	 s� is a step of DSumh � ��u�� � s� and s and u� are

reachable� Let u be the state of DSumhp de�ned by ��u� � s and u�tree � u��tree� Since u�

is reachable it follows by Lemmas � and � that u� j� T � Application of Lemma � now gives
that DSumhp has a step u

a
	 u� and u j� T � Lemma � implies that u is reachable�



	� Correctness Proof 	�

For condition �c�� suppose that s is a reachable state of DSumh � Let � be an execution of
DSumh that ends in s� By induction on the number of steps in � we prove that there exists a
reachable state of DSumhp that is mapped onto s by �� If � consists of � steps then s is a start
state� Since graph G is connected� it has a spanning tree T with root v�� Let u be the state
of DSumhp de�ned by ��u� � s� u�tree
v�� � e� and� for v �� v�� u�tree
v� equals the unique
link of T with target v� Then u is a start state of DSumhp � For the induction step� suppose
that � ends with a step s�

a
	 s� By induction hypothesis� there exists a reachable state u�

with ��u�� � s�� Let u be the state of DSumhp with ��u� � s and u�tree � u��tree� If u�
a
	 u

is a step then u is reachable and we are done� So assume that u�
a
	 u is not a step� Then

a � MSG�e�m�� for some e and m� and� if we let v � target�e�� u� j� 
busy 
v� 
 e �� tree
v��
Let t and t� be the states of DSumhp that are identical to u and u�� respectively� except that
t�tree
v� � t��tree
v� � e� Then t�

a
	 t and ��t� � s� Thus� in order to prove the induction

step it su�ces to show that t� is reachable� By Lemma �� u� j� T��w�� for all w� Therefore� by
de�nition of t�� t� j� T��w�� for all w �� v� Since s� j� 
busy 
v� and s� is reachable and enables
a MSG step� s� j� Init�v� by C��e�� This implies t� j� Init�v�� and therefore t� j� T��v�� We
prove that t� satis�es the three conjuncts of T��

�� First we prove v �� v� by contradiction� Assume v � v�� Then� using s j� Init�v� and
s j� I�� we conclude e � e�� By Lemma �� u� j� tree
v�� � e�� This contradicts the fact
u� j� e �� tree
v�� Since v �� v� and u� j� tree
v�� � e�� t

� j� tree
v�� � e��

�� By construction� t� j� v � target�tree
v��� For w �� v� t� j� w � target�tree
w�� follows
from the fact that� by Lemma �� u� j� w � target�tree
w���

�� If we consider the graph with nodes V and links ft��tree
v� j v � V�fv�gg� then clearly
each node has one incoming link� except v�� which has no incoming link� Therefore in
order to prove that this graph is a tree� it su�ces to show that it has no cycles� We know
that the graph with nodes V and links fu��tree
v� j v � V�fv�gg is a tree and therefore
has no cycles� Since the only di
erence between the two graphs is the incoming edge
of v� any cycle of ft��tree
v� j v � V�fv�gg contains v� But such a cycle cannot exist�
since t� j� Init�v� and t� j� 
Init�w� for all nodes w from which v can be reached by a
nonempty path� The proof of this last fact is by induction on the length of the path�
For the induction base� note that t� j� mq 
e� �� empty since t� enables a MSG�e�m�
step� Further v �� v� by ���� and thus e �� e�� Now use t� j� C��e� to conclude
t� j� 
Init�source�tree
v���� For the induction step� let w be a node with t� j� 
Init�w��
Then t� j� par 
w� � tree
w� since t� j� T��w�� Hence t

� j� 
Init�source�tree
w��� since
t� j� C��w��

Now use Lemma � to conclude that t� is reachable� �

��	 A Re�nement

In this subsection we will prove the existence of a re�nement from DSumhp to S� For this we
need two �nal invariants� which state that non�unit messages can only travel on the reversed
spanning tree� and that there is a conservation of weight in the network�

Lemma �� For all reachable states of DSumhp and for all e�

head�mq
e�� �� � 	 e � tree
source�e����
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Lemma �� For all reachable states of DSumhp �
X

v�V

weight�v� �
X

fv�VjInit�v�g

weight�v�

�
X

fv�Vjbusy
v�g

total 
v�

�
X

fe�Ejmq
e���emptyg

head�mq
e��

� if Done�v�� then total 
v�� else �

Theorem �� The function r from states of DSumhp to states of S de�ned by

r�s� j� done � s j� Done�v��

is a re�nement from DSumhp to S�

Proof� For any start state s of DSumhp � s j� 
Done�v��� and for the unique start state u of
S� u j� 
done � Hence r satis�es condition �a� in the de�nition of a re�nement�
To prove condition �b�� observe that for all reachable states s and for all v�

D�v�
�
� v �� v� 
 rcvd�v�� � size�to�v��� 	 Done�v�

Because suppose that v �� v� and s j� rcvd�v�� � size�to�v���� By induction on the length of
the path from v� to v in s�tree we prove that s j� Done�v�� For the induction base� suppose
that s j� source�tree
v�� � v�� Then� by C��v��� s j� rcvd 
tree
v���� � �� By I	�v�� this
implies s j� 
Init�v�� By T��v�� this in turn implies s j� par 
v� � tree
v�� Now s j� Done�v�
follows by combination of the derived properties with C
� The induction step is similar�
For condition �b�� suppose s

a
	 s� is a step of DSumhp and s is reachable� We distinguish

between two cases�

�� a is a MSG or REPORT action� Using invariant D it is easy to prove that s j�

Done�v�� and s� j� 
Done�v��� Hence r�s� � r�s���

�� a � RESULT�m�� for some m� Then s j� busy 
v�� 
 cnt 
v�� � �� so by I��� Rcvd�v�� �
size�to�v��� By D � this means that s j� Done�v� for all v �� v�� If we combine this
fact with C�� we get mq 
e� � empty for all e� Now Lemma �� gives s j� total 
v�� �P

v�V weight�v�� Thus� by the precondition of a� m �
P

v�V weight�v�� Clearly s� j�

Done�v�� and so we can conclude r�s�
a
	 r�s���

�

��� Inclusion of Fair Traces

The fact that traces�DSum� � traces�S� does not imply fairtraces�DSum� � fairtraces�S�� It
might be that DSum does not produce any output but instead performs an in�nite sequence
of consecutive internal actions or gets into a state of deadlock before an output step has been
done� However� using Lemma �� we can prove the absence of divergent computation�

Lemma �� I�O automaton DSumh has no in�nite executions�
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Proof� De�ne the state function Norm as follows�

Norm
�
�
X

e�E

��rcvd 
e� � len�mq
e��

Since both sending and receiving a value increases Norm � each step of DSumh with labelMSG
or REPORT increases Norm� By C�� Norm can be at most � � size�E�� for any reachable
state� Therefore there can be at most �nitely many steps labeled by an internal actions in
any execution of DSumh � Since RESULT steps change the value of busy
v�� from true to
false� there can be at most one such step after the last internal step� �

The proof that DSumh has no premature deadlocks is slightly more involved�

Lemma �� If a reachable state of DSumh has no outgoing steps then Done�v�� holds in that
state�

Proof� �Sketch� Suppose that some given state is deadlocked� Then no message can be in
transit on the spanning tree or in e�� otherwise a MSG step would be enabled� This implies�
by C	 and I�� that 
Init�v� for all nodes v� This in turn implies that no message can be
in transit on any link it the network �otherwise a MSG action would be enabled�� Next we
use I
 to infer that exactly one message has been sent on each link in the network� except
those on the reversed spanning tree� Finally� we prove for all nodes v of the network� starting
with the leaves of the tree� that v has received a message over all incoming links� since no
REPORT or RESULT action is enabled in v this implies Done�v�� �

Theorem �� fairtraces�DSum� � fairtraces�S��

Proof� �Sketch� The existence of a strong history relation from DSum to DSumh together
with Lemmas �� and �� guarantee that DSum has no in�nite executions� or maximal exe�
cutions consisting of internal actions only� Combined with traces�DSum� � traces�S� this
implies the theorem� �

�� Concluding Remarks

History relations together with re�nements form a complete proof method for trace inclusion if
the abstract automaton is deterministic 
���� Since I�O automaton S is trivially deterministic�
this means that at least in theory there is no need to use prophecy variables in the correctness
proof of DSum � In fact� it is not so di�cult to eliminate the prophecy variable construction
from this paper� The key step is to establish as an additional invariant that for all reachable
states of DSumh the set fpar 
v� j v �� v� 
 
Init�v�g forms a tree with root v�� This
alternative proof is even slightly shorter than the proof outlined in this paper� However� I
do not think that this is an argument against the use of the prophecy variable tree� This
auxiliary variable formalizes an important intuition about the algorithm� namely that in each
execution a spanning tree is constructed� By �xing this tree� the prophecy variable makes it
conceptually simpler to reason about the algorithm�
Since forward simulations form a complete proof method for trace inclusion if the abstract

automaton is deterministic 
���� the history variable rcvd can be eliminated from the proof of
this paper in favor of a forward simulation relation� But again� even though this will probably
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lead to a small reduction in the size of the proof� there are good reasons to keep this auxiliary
variable� In the intuitive reasoning about the protocol the number of messages received over
the links plays an important role� and the history variable construction makes it possible to
formalize this reasoning�
The veri�cation of this paper has not yet been proof�checked by computer� I think that

it will be worthwhile to do this� building on earlier work of 
��� �� ��� ��� An interesting
question here is whether the correctness of the history variable construction can be veri�ed
fully automatically by a theorem prover� by simply checking the �trivial� proof obligations
of a history relation �This would eliminate the need to formalize the meta�theory of history
variables��� Another question is whether the prophecy variable construction can be formalized
easily� or whether it is simpler to formalize a proof that does not use this construction�
Although I have carried out the veri�cation using the I�O automaton model� it is probably

trivial to translate this story to other state based models� such as Lamport	s Temporal Logic
of Actions 
���� Since liveness issues do not play a role� also a process algebraic veri�cation
in a calculus such as �CRL 
�� should not be too di�cult�
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A� I�O automata and Simulations

In this appendix we give a brief account of those parts of I�O automata theory that we need
for the purposes of the paper� For a more extensive introduction to the I�O automata model
we refer to 
��� ����
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A�� I�O automata

An action signature S is a triple �in�S�� out�S�� int�S�� of three disjoint sets of respectively
input actions� output actions and internal actions� The derived sets of external actions� locally
controlled actions and actions of S are de�ned respectively by

ext�S� � in�S�� out�S��

local�S� � out�S� � int�S��

acts�S� � in�S�� out�S� � int�S��

An I�O automaton A �or input�output automaton� consists of the following �ve components�

� an action signature sig�A�
�we will write in�A� for in�sig�A��� out�A� for out�sig�A��� etc���

� a set states�A� of states�

� a nonempty set start�A� � states�A� of start states�

� a set steps�A� � states�A��acts�A��states�A� of transitions� with the property that
for every state s and input action a in in�A� there is a transition �s� a� s�� in steps�A��

� a partition part�A� of local�A� in at most countably many equivalence classes�

We let s� s�� u� u���� range over states� and a��� over actions� We write s a�	A s�� or just s
a
	 s�

if A is clear from the context� as a shorthand for �s� a� s�� � steps�A��
An action a is said to be enabled in a state s� if s

a
	 s� for some s�� Since every input action

is enabled in every state� I�O automata are said to be input enabled� The intuition behind
the input�enabling condition is that input actions are under control of the environment� and
that the system that is modeled by an I�O automaton cannot prevent the environment from
doing these actions� The partition part�A� describes� what intuitively are the �components	
of the system� and will be used to de�ne fairness�

A�� Traces and fair traces

Let A be an I�O automaton� An execution fragment of A is a �nite or in�nite alternating
sequence s�a�s�a�s� � � � of states and actions of A� beginning with a state� and if it is �nite

also ending with a state� such that for all i� si
ai��
	 si��� An execution of A is an execution

fragment that begins with a start state� A state s of A is reachable if it is the �nal state of
some �nite execution of A�
Suppose � � s�a�s�a�s� � � � is an execution fragment of A� Then trace���� the trace of �� is

the subsequence of a�a� � � � consisting of the external actions of A� With traces�A� we denote
the set of traces of executions of A� For s� s� states of A and 	 a �nite sequence of external
actions of A� we de�ne s ���As

� i
 A has a �nite execution fragment with �rst state s� last
state s� and trace 	�
A fair execution of an I�O automaton A is de�ned to be an execution � of A such that the

following conditions hold for each class C of part�A��

�� If � is �nite� then no action of C is enabled in the �nal state of ��
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�� If � is in�nite� then either � contains in�nitely many occurrences of actions from C� or
� contains in�nitely many occurrences of states in which no action from C is enabled�

A fair execution gives fair turns to each class of part�A�� and therefore to each component
of the system being modeled� A state of A is said to be quiescent if only input actions are
enabled in this state� Intuitively� in a quiescent state the system is waiting for an input from
the environment� A �nite execution is fair if and only if its �nal state is quiescent� We denote
the set of traces of fair executions of A by fairtraces�A��

A�� Simulations

Below we review some basic de�nitions and results concerning simulation proof techniques�
For a more extensive introduction we refer to 
����
Let A and B be I�O automata with the same input and output actions� respectively�

�� A re�nement from A to B is a function r from states of A to states of B that satis�es
the following two conditions�

�a� If s is a start state of A then r�s� is a start state of B�

�b� If s a�	A s� and both s and r�s� are reachable� then r�s� ���Br�s��� where 	 �
trace��s � a� s ����

�� A forward simulation from A to B is a relation between states of A and states of B
that satis�es the following two conditions�

�a� If s is a start state of A then there exists a start state u of B with �s� u� � f �

�b� If s a�	A s�� �s� u� � f and s and u are reachable� then there exists a state u� of B
such that u ���Bu

� and �s�� u�� � f � where 	 � trace��s � a� s ����

�� A history relation from A to B is a forward simulation from A to B whose inverse is a
re�nement from B to A�

�� A backward simulation from A to B is a relation between states of A and states of B
that satis�es the following three conditions�

�a� If s is a start state of A and u is a reachable state of B with �s� u� � b� then u is
a start state of B�

�b� If s a�	A s�� �s�� u�� � b and s and u� are reachable� then there exists a reachable
state u of B such that u ���Bu

� and �s� u� � b� where 	 � trace��s � a� s ����

�c� If s is a reachable state of A then there exists a reachable state u of B with
�s� u� � b�

�� A prophecy relation from A to B is a backward simulation from A to B whose inverse
is a re�nement from B to A�

A re�nement� forward simulation� etc� is called strong if in each case where one automaton
is required to simulate a step from the other automaton� this is possible with an execution
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fragment consisting of exactly one step�� A relation R over S� and S� is image
�nite if for all
elements s� of S� there are only �nitely many elements s� of S� such that �s�� s�� � R�

Theorem �� �
���� Let A and B be I�O automata with the same input and output actions�
respectively�

�� If there is a re�nement from A to B then traces�A� � traces�B��

�� If there is a forward simulation from A to B then traces�A� � traces�B��

�� If there is a history relation from A to B then traces�A� � traces�B��

	� If there is an image
�nite backward simulation from A to B then traces�A� � traces�B��

�� If there is an image
�nite prophecy relation from A to B then traces�A� � traces�B��

�Here we use the word �strong
 in the sense of 	���� Actually� the notions of simulation that we consider
here are �weak
 in the sense of 	�
� since their de�nitions include reachability conditions�


