
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Verification of a distributed summation algorithm

F.W. Vaandrager

Computer Science/Department of Software Technology

CS-R9505 1995

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301663842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report CS-R9505
ISSN 0169-118X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Veri�cation of a Distributed Summation Algorithm

Frits W� Vaandrager

CWI

P�O� Box ������ ���� GB Amsterdam� The Netherlands

fritsv�cwi�nl

University of Amsterdam� Programming Research Group

Kruislaan ��	� ���
 SJ Amsterdam� The Netherlands

Abstract

A correctness proof of a variant of Segall�s Propagation of Information with Feedback protocol is presented�

The proof� which is carried out within the I�O automata model of Lynch and Tuttle� is standard except for

the use of a prophecy variable� The aim of this paper is to show that� unlike what has been suggested in

the literature� assertional methods based on invariant reasoning support an intuitive way to think about and

understand this algorithm�

AMS Subject Classi�cation ������ ��M�	� ��Q	
� ��Q��� ��Q�
� ��Q�	�

CR Subject Classi�cation ������ C����� D����� F����� F����

Keywords � Phrases� Distributed network protocols� Protocol veri�cation� I�O automata� Invariants� History

variables� Prophecy variables� Re�nements�

Notes� This paper is dedicated to P�C� Baayen who� like the root node in Segall�s algorithm� initiated a cascade

of mathematical activity� A preliminary version appeared in� K�R� Apt� A� Schrijver� N�M� Temme� editors�

From Universal Morphisms to Megabytes � a Baayen Space Odyssey� pages
���	�� CWI� Amsterdam�

December ����� The author was supported by Esprit BRA ���� concur ��

�� Introduction

Reasoning about distributed algorithms appears to be intrinsically di�cult and will probably
always require a great deal of ingenuity� Nevertheless� research on formal veri�cation has
provided a whole range of well�established concepts and techniques that may help us to
tackle problems in this area� It seems that by now the basic principles for reasoning about
distributed algorithms have been discovered and that the main issue that remains is the
problem of scale� we know how to analyze small algorithms but are still lacking methods and
tools to manage the complexity of the the bigger ones�

Not everybody agrees with this view� however� and frequently one can hear claims that
existing approaches cannot deal in a �natural	 way with certain types of distributed algo�
rithms� A new approach is then proposed to address this problem� A recent example of this
is a paper by Chou
��� who oers a rather pessimistic view on the state�of�the�art in formal
veri�cation�

At present� reasoning about distributed algorithms is still an ad hoc� trial�and�
error process that needs a great deal of ingenuity� What is lacking is a practical

�� Introduction �

method that supports� on the one hand� an intuitive way to think about and
understand distributed algorithms and� on the other hand� a formal technique for
reasoning about distributed algorithms using that intuitive understanding�

In his paper� Chou proposes an extension of the assertional methods of
�� �� �� �� ��� ��� ����
and argues that this extension allows for a more direct formalization of intuitive� operational
reasoning about distributed algorithms� To illustrate his method� Chou discusses a variant
of Segall	s PIF �Propagation of Information with Feedback� protocol
���� A complex and
messy proof of this algorithm using existing methods is contrasted with a slightly simpler but
de�nitely more structured proof based on the new method�

Is the process of using assertional methods based on invariant reasoning ad hoc� Per�
sonally� I believe it is not� On the contrary� I �nd that these methods provide signi�cant
guidance and structure to veri�cations� After one has described both the algorithm and
its speci�cation as abstract programs� it is usually not so di�cult to come up with a �rst
guess of a simulation relation from the state space of the algorithm to the state space of the
speci�cation� In order to state this simulation� it is sometimes necessary to add auxiliary
history and prophecy variables to the low�level program� By just starting to prove that the
guessed simulation relation is indeed a simulation� i�e�� that for each execution of the low�level
program there exists a corresponding execution of the high�level program� one discovers the
need for certain invariants� properties that are valid for all reachable states of the programs�
To state these invariant properties it is sometimes convenient or even necessary to introduce
auxiliary state variables� Frequently one also has to prove other auxiliary invariants �rst�
The existence of a simulation relation guarantees that the algorithm is safe with respect to
the speci�cation� all the �nite behaviors of the algorithm are allowed by the speci�cation�
The concepts of invariants� history and prophecy variables� and simulation relations are so
powerful that in most cases they allow one to formalize the intuitive reasoning about safety
properties of distributed algorithms� When a simulation �and thereby safety� has been es�
tablished� this simulation often provides guidance in the subsequent proof that the algorithm
satis�es the required liveness properties� typically one proves that the simulation relates each
fair execution of the low�level program to a fair execution of the high�level program� Here
modalities from temporal logic such as �eventually� and �leads to� often make it quite easy
to formalize intuitions about the liveness properties of the algorithm�

As an illustration of the use of existing assertional methods� I present in this paper a
veri�cation within the I�O automata model
��� ��� of the algorithm discussed by Chou
���
Altogether� it took me about two hours to come up with a sketch of the proof �during a train
ride from Leiden to Eindhoven�� and about three weeks to work it out� polish it� and write
this paper� The proof is routine� except for a few nice invariants and the use of a prophecy
variable� Unlike history variables� which date back to the sixties
���� prophecy variables
have been introduced only recently
��� and there are not that many examples of their use�
My proof is not particularly short� but it does formalize in a direct way my own intuitions
about the behavior of this algorithm� It might very well be the case that for more complex
distributed algorithms new methods� such as the one of Chou
��� will pay o and lead to
shorter proofs that are closer to intuition� This paper shows that invariant based assertional
methods still work very well for a variant of Segall	s PIF protocol�

�� Description of the Algorithm �

The structure of this paper is as follows� Section � describes the algorithm formally as an
I�O automaton� Section � presents the correctness criterion and the proof that the algorithm
meets this criterion� Finally� Section � contains some conclusing remarks� Appendix A gives
a brief account of those parts of I�O automata theory that are used in this paper�

�� Description of the Algorithm
We consider a graph G � �V�E�� where V is a nonempty� �nite collection of nodes and
E � V�V is a collection of links� We assume that graph G is undirected in the sense that
�v� w� � E � �w� v� � E� and connected� To each node v in the graph a value weight�v� is
associated� taken from some setM� We assume thatM contains an element � and that there
is a binary operator � on M� such that �M��� �� is an Abelian monoid��

Nodes of G represent autonomous processors and links represent communication channels
via which these processors can send messages to each other� We assume that the communica�
tion channels are reliable and that messages are received in the same order as they are sent�
We discuss a simple distributed algorithm to compute the sum of the weights of all the nodes
in the network� The algorithm is a minor� rephrasing of an algorithm described by Chou

��� which in turn is a variant of Segall	s PIF �Propagation of Information with Feedback�
protocol
����

The only messages that are required by the algorithm are elements from M� A node in
the network enters the protocol when it receives a �rst message from one of its neighbors�
Initially� the communication channels for all the links are empty� except the channel associated
to the link e� from a �xed root node v� to itself� which contains a single message�� When an
arbitrary node v receives a �rst message� it marks the node w from which this message was
received� It then sends a � message to all its neighbors� except w� Upon receiving subsequent
messages� the values of these messages are added to the weight of v� As soon as� for a non�root
node� the total number of received messages equals the total number of neighbors� the value
that has been computed is sent back to the node from which the �rst message was received�
When� for root node v�� the total number of received messages equals the total number of
neighbors� the value that has been computed by v� is produced as the �nal outcome of the
algorithm�

In Figure �� the algorithm is speci�ed as an I�O automaton DSum using the standard
precondition�eect notation
��� ��� ��� A minor subtlety is the occurrence of the variable v
in the de�nition of the step relation� which is neither a state variable nor a formal parameter
of the actions� Semantically� the meaning of v is determined by an implicit existential quan�
ti�cation� an action a is enabled in a state s if there exists a valuation � of all the variables
�including v� that agrees with s on the state variables and with a on the parameters of the
actions� such that the precondition of a holds under �� If action a is enabled in s under �
then the eect part of a and � determine the resulting state s��

For each link e��v� w�� the source v is denoted source�e�� the target w is denoted target�e��

�So� for all m�m
�
�m

��
�M� m�m

� � m
� �m� m� �m� �m

��� � �m�m
�� �m

�� and m� � � � �m �m�
�The unit element � of the monoid is used where Chou 	
� uses a special Start message�
�The assumption that e� � �v�� v�� � E is not required� but allows for a more uniform description of the

algorithm for each node�

�� Description of the Algorithm �

Internal� MSG

REPORT

Output� RESULT

State Variables� busy � V� Bool

par � V� E

total � V �M

cnt � V� Int

mq � E�M�

Init� � �v � �busy�v�
� �e � mq �e� � if e�e� then append��� empty� else empty

MSG �e � E�m �M�
Precondition�

v � target�e� �m � head�mq �e��
E�ect�

mq �e� �� tail�mq �e��
if �busy �v� then busy �v� �� true

par �v� �� e
total �v� �� weight�v�
cnt �v� �� size�to�v�� � �
for f � from�v��fe��g do mq �f � �� append���mq�f ��

else total �v� �� total �v� 	m
cnt �v� �� cnt �v�� �

REPORT �e � E�m �M�
Precondition�

v � source�e� �� v� � busy �v� � cnt �v� � � � e�� � par �v��m � total �v�
E�ect�

busy �v� �� false

mq �e� �� append�m�mq �e��

RESULT �m �M�
Precondition�

busy �v�� � cnt �v�� � � �m � total �v��
E�ect�

busy �v�� �� false

Figure �� I�O automaton DSum �

	� Correctness Proof �

and the reverse link �w� v� is denoted e��� For each node v� from�v� gives the set of links
with source v and to�v� gives the set of links with target v� so e�from�v� � source�e��v
and e�to�v� � target�e��v� All the other data types and operation symbols used in the
speci�cation have the obvious meaning� The states of DSum are interpretations of �ve state
variables in their domains� Four of these variables represent the values of program variables
at each node�

� busy tells for each node whether or not it is currently participating in the protocol�
initially busy
v� � false for each v�

� par is used to remember the link via which a node has been activated�

� total records the sum of the values seen by a node during a run of the protocol�

� cnt gives the number of values that a node still wants to see before it will terminate�

The �fth state variablemq represents the contents of the message queue for each link� Initially�
mq
e� is empty for each link e except e��

I�O automaton DSum has three �parametrized� actions� ��� MSG� which describes the
receipt and processing of a message� ��� REPORT � by which a non root node sends the �nal
value that it has computed to its parent� and ��� RESULT � which is used by the root node to
deliver the �nal result of the computation� The partition of DSum contains an equivalence
class Bv for each node v� which gives all the actions in which node v participates�

Bv�
�
� fMSG�e�m� j e � to�v��� m �Mg � fRESULT�m� jm �Mg

and� for v �� v��

Bv
�
� fMSG�e�m� j e � to�v�� m �Mg � fREPORT�e�m� j e � from�v�� m �Mg

Actually� since it will turn out that DSum only has �nite executions� it does not matter how
we de�ne the partition of DSum� The above de�nition seems to be the most natural� since it
re ects the intuition that each node in the network represents an autonomous processor�

�� Correctness Proof

��� Correctness Criterion

The correctness property that we want to establish is that the fair traces of DSum are
contained in those of the I�O automaton S of Figure �� I�O automaton S is extremely simple�
It has only two states� an initial state where done�false and a �nal state where done�true�
There is one step� which starts in the initial state� has label RESULT�

P
v�V weight�v��� and

ends in the �nal state� Finally� part�S� contains a single equivalence class fRESULT�m� j
m �Mg�
We will prove traces�DSum� � traces�S� using a standard recipe of Abadi and Lamport
���

�rst we establish a history relation fromDSum to an I�O automatonDSumh � then a prophecy
relation from DSumh to an I�O automaton DSumhp � and �nally a re�nement from DSumhp

to S� The fact that traces�DSum� � traces�S� does not guarantee that fairtraces�DSum� �
fairtraces�S�� In order to prove this� we will show that DSum has no in�nite sequence of
consecutive internal actions and cannot get into a state of deadlock before an output step
has been performed�

	� Correctness Proof �

Output� RESULT

State Variables� done � Bool

Init� �done

RESULT �m �M�
Precondition�

�done �m �
P

v�V weight�v�
E�ect�

done �� true

Figure �� I�O automaton S�

��� Adding a History Variable

As observed by Segall
���� a crucial property of the PIF protocol is that in each maximal
execution exactly one message travels on each link� As a �rst step towards the proof of
this property� we will establish that in each execution of DSum at most one message travels
on each link� In order to state this formally as an invariant� we add a variable rcvd to
automaton DSum that records for each link e how many messages have been received on e�
This variable is similar to the variable N that Segall
��� uses in his presentation of PIF to
mark the receipt of a message over a link� Figure � describes the automatonDSumh obtained
in this way� Boxes highlight the places where DSumh diers from DSum� Variable rcvd is
an auxiliary�history variable in the sense of Owicki and Gries
��� because it does not occur
in conditions nor at the right�hand�side of assignments to other variables� Clearly� adding
rcvd does not change the behavior of automaton DSum � This can be formalized via the
following trivial result �Here a strong history relation is a relation on states whose inverse is
a functional strong bisimulation� See Appendix A�� for the de�nition���

Theorem � The inverse of the projection function that maps states from DSumh to states
of DSum is a strong history relation from DSum to DSumh �

We will use a state function Sent�e� to denote the number of messages sent over a link
e� and a state function Rcvd�v� to denote the number of messages received by a node v�
Formally� these functions are de�ned by�

Sent�e�
�
� rcvd
e� � len�mq
e��

Rcvd�v�
�
�
P

e�to�v� rcvd
e�

Invariant I below gives some basic sanity properties involving rcvd
e� and Rcvd�v�� at any
time the number of messages received from a link is nonnegative� if a node is busy then it
has received at least one message� and as soon as at least one message has been received by
a node� a message has been received over the parent link� which points towards that node�

	� Correctness Proof �

Internal� MSG

REPORT

Output� RESULT

State Variables� busy � V� Bool

par � V� E

total � V �M

cnt � V� Int

mq � E�M�

rcvd � E� Int

Init� � �v � �busy�v�
� �e � mq �e� � if e�e� then append��� empty� else empty

� �e � rcvd �e� � �

MSG �e � E�m �M�
Precondition�

v � target�e� �m � head�mq �e��
E�ect�

mq �e� �� tail�mq �e��

rcvd �e� �� rcvd �e� 	 �

if �busy �v� then busy �v� �� true

par �v� �� e
total �v� �� weight�v�
cnt �v� �� size�to�v�� � �
for f � from�v��fe��g do mq �f � �� append���mq�f ��

else total �v� �� total �v� 	m
cnt �v� �� cnt �v�� �

REPORT �e � E�m �M�
Precondition�

v � source�e� �� v� � busy �v� � cnt �v� � � � e�� � par �v��m � total �v�
E�ect�

busy �v� �� false

mq �e� �� append�m�mq �e��

RESULT �m �M�
Precondition�

busy �v�� � cnt �v�� � � �m � total �v��
E�ect�

busy �v�� �� false

Figure �� I�O automaton DSumh obtained from DSum by adding history variable rcvd �

	� Correctness Proof �

Lemma � Let I be the conjunction� for all v and e� of the following properties�

I��e�
�
� rcvd
e� � �

I��v�
�
� busy
v� 	 Rcvd�v� � �

I��v�
�
� Rcvd�v� � � 	 par
v� � to�v�
 rcvd
par
v�� � �

Then I holds for all reachable states of DSumh �

The real work starts with the proof of the next invariant I �� which is the conjunction� for
all v� of the following formulas�

I��v�
�
� Init�v�� busy
v��Done�v�

I�
�
� Init�v�� 	 Init�DSumh�

I	�v�
�
� v �� v�
 Init�v� 	 �e � from�v� � Sent�e� � �

I
�v�
�
� Init�v� 	 �e � from�v��fpar
v���g � Sent�e� � �

I�
�
� Init�v�� 	 par �v�� � e�
 Sent�e�� � �

I��v�
�
� v �� v�
 busy
v� 	 Sent�par
v���� � �

I���v�
�
� v �� v�
Done�v� 	 Sent�par
v���� � �

I���v�
�
� Init�v� 	 cnt
v� � Rcvd�v� � size�to�v��

in which the following state functions are used�

Init�v�
�
� �e � to�v� � rcvd
e� � �

Done�v�
�
� busy
v�
 �e � to�v� � rcvd
e� � �

Even though at �rst sight formula I � may look complicated� it is easy to give intuition for it�
As long as a node v has not received any message� it does not participate is the protocol and is
in state Init�v�� Upon arrival of a �rst message� the node changes status and moves to busy
v��
The node remains in this state until it has received a message from all its neighbors� then
performs a REPORT or RESULT action� and moves to its �nal state Done�v�� The following
�mutual exclusion� property is a logical consequence of invariant I� and the de�nition of state
functions Init and Done� and therefore holds for all reachable states of DSumh �

ME�v�
�
� �Init�v�
 busy
v��
 �Init�v�
 Done�v��
 �busy
v�
 Done�v��

Together with formula I��v�� ME�v� says that in any reachable state each node is in exactly
one of the three states Init�v�� busy
v� or Done�v�� Formulas I��I�� specify� for each node v�
for each of the three possible states of v� and for each outgoing link of v� how many messages
have been sent over that link� And since this number is always either � or �� this implies that
during each execution at most one message can be sent over each link �formula C� below�� In
order to make the induction work� a �nal conjunct I�� is needed in I � that says that� except
for the initial state of v� cnt
v� gives the total number of links over which no message has
yet been received by v� In the routine proof that I � is an invariant� it is convenient to use
the logical consequences C��C� of I
 I � that are stated in Lemma �� Properties C��C
 of
Lemma � are also logical consequences of I
 I �� and will play a role later on in this paper�

Lemma � For all v and e� the following formulas are logical consequences of I
 I � and the
de�nitions of the state functions�

	� Correctness Proof �

C��e�
�
� Sent�e� � �

C��v�
�
� ��e � to�v� � rcvd
e� � �� � Rcvd�v� � size�to�v��

C��e�
�
� mq
e� �� empty
 busy
target�e�� 	 Init�target�e��

C��e�
�
� e �� e�
mq
e� �� empty 	 Init�source�e��

C��v�
�
� Init�v� 	 Init�source�par
v���

C	�e�
�
� Init�target�e��
mq
e� � empty 	 Init�source�e��

C
�v�
�
� v �� v�
 Init�v�
 Sent�par
v���� � � 	 Done�v�

Lemma � Property I � holds for all reachable states of DSumh �

��� Adding a Prophecy Variable

Intuitively� in the �rst phase of the algorithm a spanning tree is constructed with root v��
and this spanning tree is used to accumulate values in the second phase� When the algorithm
starts� it not clear how the spanning tree is going to look like and in fact any spanning tree
is still possible� While the algorithm proceeds� the spanning tree is constructed step by step�
The choice whether an arbitrary link will be part of the spanning tree depends on the relative
speeds of the processors� and is entirely nondeterministic� Such unpredictable� nondetermin�
istic behavior is typical for distributed computation but often complicates analysis�
Fortunately� the concept of a prophecy variable of Abadi and Lamport
�� allows us to reduce

the nondeterminism of the algorithm or� more precisely� to push nondeterminism backwards
to the initial state� We add to DSumh a new variable tree� which records an initial guess of
the spanning tree and enforces �as a self�ful�lling prophecy� that the actual spanning tree
that is constructed during execution is equal to this initial guess� Figure � describes the
automaton DSumhp obtained in this way� Boxes highlight the places where DSumhp diers
from DSumh � In Figure �� tree is a function that tells for each set of links whether or not it
is a tree� More formally� for E � E and V � fsource�e�� target�e� j e � Eg� tree�E� � true i
either E � � or there exists a node v � V such that for all v� � V there is a unique path of
links in E leading from v to v��
In order to show that tree is a prophecy variable in the sense of
�� ���� we establish a

prophecy relation from DSumh to DSumhp �see Appendix A�� for the de�nition�� For this�
we need two trivial invariants and two further lemmas�

Lemma � For all reachable states of DSumhp and for all v�

T��v�
�
� Init�v� 	 par
v� � tree
v�

Lemma � For all reachable states of DSumhp �

T�
�
� tree
v�� � e�
 ��v � v � target�tree
v���
 tree�ftree
v� j v � V�fv�gg�

Lemma � De�ne T
�
� �v � T��v�
 T� and let � be the projection function that maps states

of DSumhp to states of DSumh � Suppose a is an action and u and u� are states of DSumhp

such that

�� u�tree � u��tree�

�� u� j� T�

	� Correctness Proof 	

Internal� MSG

REPORT

Output� RESULT

State Variables� busy � V� Bool

par � V� E

total � V �M

cnt � V� Int

mq � E�M�

rcvd � E� Int

tree � V� E

Init� � �v � �busy �v�
� �e � mq �e� � if e�e� then append��� empty� else empty

� �e � rcvd �e� � �

� tree�v�� � e� � ��v � v � target�tree�v��� � tree�ftree�v� j v � V�fv�gg�

MSG�e � E�m �M�
Precondition�

v � target�e� �m � head�mq �e�� � �busy �v� � e � tree�v��

E�ect�
mq�e� �� tail�mq �e��
rcvd �e� �� rcvd �e� 	 �
if �busy �v� then busy �v� �� true

par �v� �� e
total �v� �� weight�v�
cnt �v� �� size�to�v�� � �
for f � from�v��fe��g do mq �f � �� append���mq�f ��

else total �v� �� total �v� 	m
cnt �v� �� cnt �v�� �

REPORT �e � E�m �M�
Precondition�

v � source�e� �� v� � busy �v� � cnt �v� � � � e�� � par �v� �m � total �v�
E�ect�

busy �v� �� false

mq�e� �� append�m�mq �e��

RESULT �m �M�
Precondition�

busy �v�� � cnt �v�� � � �m � total �v��
E�ect�

busy �v�� �� false

Figure �� I�O automaton DSumhp obtained from DSumh by adding prophecy variable tree�

	� Correctness Proof 		

�� ��u�
a
	 ��u�� is a step of DSumh �

	� ��u� is reachable�

Then u
a
	 u� is a step of DSumhp and u j� T�

Proof� Since u�tree � u��tree and u� j� T�� also u j� T�� In order to show the remaining
properties� we distinguish between three cases�
��� u j� busy
v� and a � MSG�e�m�� for some v� e and m with v � target�e��
Since ��u�

a
	 ��u��� it follows by C� that ��u� j� Init�v� and therefore u j� T��v�� Because

u� j� Init�v� and u� j� T��v�� e � ��u���par
v� � u��par
v� � u��tree
v� � u�tree
v�� Thus
u

a
	 u�� Clearly� u j� T��w� for w �� v� because u� j� T��w� and because a does not change

the relevant variables�
��� u j� busy
v� and a � MSG�e�m�� for some v� e and m with v � target�e��
Then u

a
	 u�� Also ��u��par
v� � ��u���par
v� and ��u�� j� busy
v�� By the mutual exclusion

property ME�v�� u� j� Init�v�� Because u� j� T��v�� u
��par
v� � u��tree
v�� Hence

u�par
v� � ��u��par
v� � ��u���par
v� � u��par
v� � u��tree
v� � u�tree
v��

This implies u j� T��v�� Finally we observe that u j� T��w� for w �� v� because u� j� T��v�
and because a does not change the relevant variables�
��� For all e and m� a �� MSG�e�m��
Then u

a
	 u�� Also� u j� �v � T��v� because u� j� �v � T��v� and because a does not change

any of the relevant variables� �

Lemma 	 Suppose u is a state of DSumhp such that ��u� is reachable and u j� T� Then u
is reachable�

Proof� Let s�
a�	 s�

a�	 � � �
an	 sn be an execution of DSumh that ends in ��u�� Let� for

� � i � n� ui be the state of DSum
hp de�ned by ��ui� � si and ui�tree � u�tree� Repeated

application of Lemma � now gives that DSumhp has steps u�
a�	 u�

a�	 � � �
an	 un � u and�

for all i� ui j� T � Since ��u�� is a start state of DSumh and u� j� T�� u� is a start state of
DSumhp � and thus u is reachable� �

Theorem
 The inverse of projection function � is a strong image
�nite prophecy relation
from DSumh to DSumhp �

Proof� Mapping � is trivially a strong re�nement from DSumhp to DSumh � Note that as a
direct corollary of this fact� all invariants of DSumh are also invariants of DSumhp � Since the
domain of variable tree is �nite� ��� is image��nite� We prove that ��� satis�es the three
conditions of a backward simulation �condition �b� in the strong sense��
For condition �a�� suppose that s is a start state of DSumh and u is a reachable state of

DSumhp with ��u� � s� By Lemma �� u j� T�� Hence u is a start state of DSumhp �
For condition �b�� suppose that s

a
	 s� is a step of DSumh � ��u�� � s� and s and u� are

reachable� Let u be the state of DSumhp de�ned by ��u� � s and u�tree � u��tree� Since u�

is reachable it follows by Lemmas � and � that u� j� T � Application of Lemma � now gives
that DSumhp has a step u

a
	 u� and u j� T � Lemma � implies that u is reachable�

	� Correctness Proof 	�

For condition �c�� suppose that s is a reachable state of DSumh � Let � be an execution of
DSumh that ends in s� By induction on the number of steps in � we prove that there exists a
reachable state of DSumhp that is mapped onto s by �� If � consists of � steps then s is a start
state� Since graph G is connected� it has a spanning tree T with root v�� Let u be the state
of DSumhp de�ned by ��u� � s� u�tree
v�� � e� and� for v �� v�� u�tree
v� equals the unique
link of T with target v� Then u is a start state of DSumhp � For the induction step� suppose
that � ends with a step s�

a
	 s� By induction hypothesis� there exists a reachable state u�

with ��u�� � s�� Let u be the state of DSumhp with ��u� � s and u�tree � u��tree� If u�
a
	 u

is a step then u is reachable and we are done� So assume that u�
a
	 u is not a step� Then

a � MSG�e�m�� for some e and m� and� if we let v � target�e�� u� j� busy
v�
 e �� tree
v��
Let t and t� be the states of DSumhp that are identical to u and u�� respectively� except that
t�tree
v� � t��tree
v� � e� Then t�

a
	 t and ��t� � s� Thus� in order to prove the induction

step it su�ces to show that t� is reachable� By Lemma �� u� j� T��w�� for all w� Therefore� by
de�nition of t�� t� j� T��w�� for all w �� v� Since s� j� busy
v� and s� is reachable and enables
a MSG step� s� j� Init�v� by C��e�� This implies t� j� Init�v�� and therefore t� j� T��v�� We
prove that t� satis�es the three conjuncts of T��

�� First we prove v �� v� by contradiction� Assume v � v�� Then� using s j� Init�v� and
s j� I�� we conclude e � e�� By Lemma �� u� j� tree
v�� � e�� This contradicts the fact
u� j� e �� tree
v�� Since v �� v� and u� j� tree
v�� � e�� t

� j� tree
v�� � e��

�� By construction� t� j� v � target�tree
v��� For w �� v� t� j� w � target�tree
w�� follows
from the fact that� by Lemma �� u� j� w � target�tree
w���

�� If we consider the graph with nodes V and links ft��tree
v� j v � V�fv�gg� then clearly
each node has one incoming link� except v�� which has no incoming link� Therefore in
order to prove that this graph is a tree� it su�ces to show that it has no cycles� We know
that the graph with nodes V and links fu��tree
v� j v � V�fv�gg is a tree and therefore
has no cycles� Since the only dierence between the two graphs is the incoming edge
of v� any cycle of ft��tree
v� j v � V�fv�gg contains v� But such a cycle cannot exist�
since t� j� Init�v� and t� j� Init�w� for all nodes w from which v can be reached by a
nonempty path� The proof of this last fact is by induction on the length of the path�
For the induction base� note that t� j� mq
e� �� empty since t� enables a MSG�e�m�
step� Further v �� v� by ���� and thus e �� e�� Now use t� j� C��e� to conclude
t� j� Init�source�tree
v���� For the induction step� let w be a node with t� j� Init�w��
Then t� j� par
w� � tree
w� since t� j� T��w�� Hence t

� j� Init�source�tree
w��� since
t� j� C��w��

Now use Lemma � to conclude that t� is reachable� �

��	 A Re�nement

In this subsection we will prove the existence of a re�nement from DSumhp to S� For this we
need two �nal invariants� which state that non�unit messages can only travel on the reversed
spanning tree� and that there is a conservation of weight in the network�

Lemma �� For all reachable states of DSumhp and for all e�

head�mq
e�� �� � 	 e � tree
source�e����

	� Correctness Proof 	�

Lemma �� For all reachable states of DSumhp �
X

v�V

weight�v� �
X

fv�VjInit�v�g

weight�v�

�
X

fv�Vjbusyv�g

total
v�

�
X

fe�Ejmqe���emptyg

head�mq
e��

� if Done�v�� then total
v�� else �

Theorem �� The function r from states of DSumhp to states of S de�ned by

r�s� j� done � s j� Done�v��

is a re�nement from DSumhp to S�

Proof� For any start state s of DSumhp � s j� Done�v��� and for the unique start state u of
S� u j� done � Hence r satis�es condition �a� in the de�nition of a re�nement�
To prove condition �b�� observe that for all reachable states s and for all v�

D�v�
�
� v �� v�
 rcvd�v�� � size�to�v��� 	 Done�v�

Because suppose that v �� v� and s j� rcvd�v�� � size�to�v���� By induction on the length of
the path from v� to v in s�tree we prove that s j� Done�v�� For the induction base� suppose
that s j� source�tree
v�� � v�� Then� by C��v��� s j� rcvd
tree
v���� � �� By I	�v�� this
implies s j� Init�v�� By T��v�� this in turn implies s j� par
v� � tree
v�� Now s j� Done�v�
follows by combination of the derived properties with C
� The induction step is similar�
For condition �b�� suppose s

a
	 s� is a step of DSumhp and s is reachable� We distinguish

between two cases�

�� a is a MSG or REPORT action� Using invariant D it is easy to prove that s j�
Done�v�� and s� j� Done�v��� Hence r�s� � r�s���

�� a � RESULT�m�� for some m� Then s j� busy
v��
 cnt
v�� � �� so by I��� Rcvd�v�� �
size�to�v��� By D � this means that s j� Done�v� for all v �� v�� If we combine this
fact with C�� we get mq
e� � empty for all e� Now Lemma �� gives s j� total
v�� �P

v�V weight�v�� Thus� by the precondition of a� m �
P

v�V weight�v�� Clearly s� j�

Done�v�� and so we can conclude r�s�
a
	 r�s���

�

��� Inclusion of Fair Traces

The fact that traces�DSum� � traces�S� does not imply fairtraces�DSum� � fairtraces�S�� It
might be that DSum does not produce any output but instead performs an in�nite sequence
of consecutive internal actions or gets into a state of deadlock before an output step has been
done� However� using Lemma �� we can prove the absence of divergent computation�

Lemma �� I�O automaton DSumh has no in�nite executions�

�� Concluding Remarks 	�

Proof� De�ne the state function Norm as follows�

Norm
�
�
X

e�E

��rcvd
e� � len�mq
e��

Since both sending and receiving a value increases Norm � each step of DSumh with labelMSG
or REPORT increases Norm� By C�� Norm can be at most � � size�E�� for any reachable
state� Therefore there can be at most �nitely many steps labeled by an internal actions in
any execution of DSumh � Since RESULT steps change the value of busy
v�� from true to
false� there can be at most one such step after the last internal step� �

The proof that DSumh has no premature deadlocks is slightly more involved�

Lemma �� If a reachable state of DSumh has no outgoing steps then Done�v�� holds in that
state�

Proof� �Sketch� Suppose that some given state is deadlocked� Then no message can be in
transit on the spanning tree or in e�� otherwise a MSG step would be enabled� This implies�
by C	 and I�� that Init�v� for all nodes v� This in turn implies that no message can be
in transit on any link it the network �otherwise a MSG action would be enabled�� Next we
use I
 to infer that exactly one message has been sent on each link in the network� except
those on the reversed spanning tree� Finally� we prove for all nodes v of the network� starting
with the leaves of the tree� that v has received a message over all incoming links� since no
REPORT or RESULT action is enabled in v this implies Done�v�� �

Theorem �� fairtraces�DSum� � fairtraces�S��

Proof� �Sketch� The existence of a strong history relation from DSum to DSumh together
with Lemmas �� and �� guarantee that DSum has no in�nite executions� or maximal exe�
cutions consisting of internal actions only� Combined with traces�DSum� � traces�S� this
implies the theorem� �

�� Concluding Remarks

History relations together with re�nements form a complete proof method for trace inclusion if
the abstract automaton is deterministic
���� Since I�O automaton S is trivially deterministic�
this means that at least in theory there is no need to use prophecy variables in the correctness
proof of DSum � In fact� it is not so di�cult to eliminate the prophecy variable construction
from this paper� The key step is to establish as an additional invariant that for all reachable
states of DSumh the set fpar
v� j v �� v�
 Init�v�g forms a tree with root v�� This
alternative proof is even slightly shorter than the proof outlined in this paper� However� I
do not think that this is an argument against the use of the prophecy variable tree� This
auxiliary variable formalizes an important intuition about the algorithm� namely that in each
execution a spanning tree is constructed� By �xing this tree� the prophecy variable makes it
conceptually simpler to reason about the algorithm�
Since forward simulations form a complete proof method for trace inclusion if the abstract

automaton is deterministic
���� the history variable rcvd can be eliminated from the proof of
this paper in favor of a forward simulation relation� But again� even though this will probably

References 	�

lead to a small reduction in the size of the proof� there are good reasons to keep this auxiliary
variable� In the intuitive reasoning about the protocol the number of messages received over
the links plays an important role� and the history variable construction makes it possible to
formalize this reasoning�
The veri�cation of this paper has not yet been proof�checked by computer� I think that

it will be worthwhile to do this� building on earlier work of
��� �� ��� ��� An interesting
question here is whether the correctness of the history variable construction can be veri�ed
fully automatically by a theorem prover� by simply checking the �trivial� proof obligations
of a history relation �This would eliminate the need to formalize the meta�theory of history
variables��� Another question is whether the prophecy variable construction can be formalized
easily� or whether it is simpler to formalize a proof that does not use this construction�
Although I have carried out the veri�cation using the I�O automaton model� it is probably

trivial to translate this story to other state based models� such as Lamport	s Temporal Logic
of Actions
���� Since liveness issues do not play a role� also a process algebraic veri�cation
in a calculus such as �CRL
�� should not be too di�cult�

Acknowledgement

Ching�Tsun Chou outlined how the prophecy variable construction in my proof can be avoided
and suggested many improvements� Thanks to David Gri�oen for proofreading�

References

�� M� Abadi and L� Lamport� The existence of re�nement mappings� Theoretical Computer
Science� ���������!���� �����

�� K�M� Chandy and J� Misra� Parallel Program Design� A Foundation� Addison�Wesley�
�����

�� C��T� Chou� Mechanical veri�cation of distributed algorithms in higher�order logic�
In T�F� Melham and J� Camilleri� editors� Proceedings �th International Workshop on
Higher
Order Logic and its Applications� volume ��� of Lecture Notes in Computer Sci

ence� pages ���!���� Springer�Verlag� ����� A revised version will appear in The Com

puter Journal� �����

�� C��T� Chou� Practical use of the notions of events and causality in reasoning about dis�
tributed algorithms� CS Report "������� UCLA� October ����� Available via anonymous
ftp at the URL ftp���ftp�cs�ucla�edu�pub�chou�nil�ps�

�� J�F� Groote and A� Ponse� Proof theory for �CRL� A language for processes with data�
In D�J� Andrews� J�F� Groote� and C�A� Middelburg� editors� Proceedings of the Inter

national Workshop on Semantics of Speci�cation Languages� Workshops in Computer
Science� pages ���!���� Springer�Verlag� �����

�� L� Helmink� M�P�A� Sellink� and F�W� Vaandrager� Proof�checking a data link protocol� In
H� Barendregt and T� Nipkow� editors� Proceedings International Workshop TYPES���
Nijmegen� The Netherlands� May ����� volume ��� of Lecture Notes in Computer Science�
pages ���!���� Springer�Verlag� ����� Full version available as Report CS�R����� CWI�
Amsterdam� March �����

�� B� Jonsson� Compositional speci�cation and veri�cation of distributed systems� ACM

A� I�O automata and Simulations 	�

Transactions on Programming Languages and Systems� ���������!���� March �����

�� S�S� Lam and A�U� Shankar� Protocol veri�cation via projections� IEEE Transactions
on Software Engineering� ���������!���� July �����

�� L� Lamport� Specifying concurrent program modules� ACM Transactions on Program

ming Languages and Systems� ��������!���� �����

��� L� Lamport� The temporal logic of actions� ACM Transactions on Programming Lan

guages and Systems� ���������!���� March �����

��� P� Lucas� Two constructive realizations of the block concept and their equivalence�
Technical Report ������� IBM Laboratory� Vienna� June �����

��� N�A� Lynch and M�R� Tuttle� Hierarchical correctness proofs for distributed algorithms�
In Proceedings of the �th Annual ACM Symposium on Principles of Distributed Comput

ing� pages ���!���� August ����� A full version is available as MIT Technical Report
MIT�LCS�TR�����

��� N�A� Lynch and M�R� Tuttle� An introduction to input�output automata�CWI Quarterly�
��������!���� September �����

��� N�A� Lynch and F�W� Vaandrager� Forward and backward simulations ! part I� Untimed
systems� Report CS�R����� CWI� Amsterdam� March ����� Also� MIT�LCS�TM�����b�
Laboratory for Computer Science� Massachusetts Institute of Technology� Cambridge�
MA� To appear in Information and Computation�

��� Z� Manna and A� Pnueli� The Temporal Logic of Reactive and Concurrent Systems�

Speci�cation� Springer�Verlag� �����

��� R� Milner� Communication and Concurrency� Prentice�Hall International� Englewood
Clis� �����

��� T� Nipkow and K� Slind� I�O automata in Isabelle�HOL� In Proceedings International
Workshop TYPES�	� Lecture Notes in Computer Science� Springer�Verlag� ����� To
appear�

��� S� Owicki and D� Gries� An axiomatic proof technique for parallel programs� Acta

Informatica� ��������!���� �����

��� A� Segall� Distributed network protocols� IEEE Transactions on Information Theory�
IT���������!��� January �����

��� J� S#gaard�Andersen� S� Garland� J� Guttag� N�A� Lynch� and A� Pogosyants� Computer�
assisted simulation proofs� In C� Courcoubetis� editor� Proceedings of the �th International
Conference on Computer Aided Veri�cation� Elounda� Greece� volume ��� of Lecture
Notes in Computer Science� pages ���!���� Springer�Verlag� �����

A� I�O automata and Simulations

In this appendix we give a brief account of those parts of I�O automata theory that we need
for the purposes of the paper� For a more extensive introduction to the I�O automata model
we refer to
��� ����

A� I�O automata and Simulations 	�

A�� I�O automata

An action signature S is a triple �in�S�� out�S�� int�S�� of three disjoint sets of respectively
input actions� output actions and internal actions� The derived sets of external actions� locally
controlled actions and actions of S are de�ned respectively by

ext�S� � in�S�� out�S��

local�S� � out�S� � int�S��

acts�S� � in�S�� out�S� � int�S��

An I�O automaton A �or input�output automaton� consists of the following �ve components�

� an action signature sig�A�
�we will write in�A� for in�sig�A��� out�A� for out�sig�A��� etc���

� a set states�A� of states�

� a nonempty set start�A� � states�A� of start states�

� a set steps�A� � states�A��acts�A��states�A� of transitions� with the property that
for every state s and input action a in in�A� there is a transition �s� a� s�� in steps�A��

� a partition part�A� of local�A� in at most countably many equivalence classes�

We let s� s�� u� u���� range over states� and a��� over actions� We write s a�	A s�� or just s
a
	 s�

if A is clear from the context� as a shorthand for �s� a� s�� � steps�A��
An action a is said to be enabled in a state s� if s

a
	 s� for some s�� Since every input action

is enabled in every state� I�O automata are said to be input enabled� The intuition behind
the input�enabling condition is that input actions are under control of the environment� and
that the system that is modeled by an I�O automaton cannot prevent the environment from
doing these actions� The partition part�A� describes� what intuitively are the �components	
of the system� and will be used to de�ne fairness�

A�� Traces and fair traces

Let A be an I�O automaton� An execution fragment of A is a �nite or in�nite alternating
sequence s�a�s�a�s� � � � of states and actions of A� beginning with a state� and if it is �nite

also ending with a state� such that for all i� si
ai��
	 si��� An execution of A is an execution

fragment that begins with a start state� A state s of A is reachable if it is the �nal state of
some �nite execution of A�
Suppose � � s�a�s�a�s� � � � is an execution fragment of A� Then trace���� the trace of �� is

the subsequence of a�a� � � � consisting of the external actions of A� With traces�A� we denote
the set of traces of executions of A� For s� s� states of A and 	 a �nite sequence of external
actions of A� we de�ne s ���As

� i A has a �nite execution fragment with �rst state s� last
state s� and trace 	�
A fair execution of an I�O automaton A is de�ned to be an execution � of A such that the

following conditions hold for each class C of part�A��

�� If � is �nite� then no action of C is enabled in the �nal state of ��

A� I�O automata and Simulations 	�

�� If � is in�nite� then either � contains in�nitely many occurrences of actions from C� or
� contains in�nitely many occurrences of states in which no action from C is enabled�

A fair execution gives fair turns to each class of part�A�� and therefore to each component
of the system being modeled� A state of A is said to be quiescent if only input actions are
enabled in this state� Intuitively� in a quiescent state the system is waiting for an input from
the environment� A �nite execution is fair if and only if its �nal state is quiescent� We denote
the set of traces of fair executions of A by fairtraces�A��

A�� Simulations

Below we review some basic de�nitions and results concerning simulation proof techniques�
For a more extensive introduction we refer to
����
Let A and B be I�O automata with the same input and output actions� respectively�

�� A re�nement from A to B is a function r from states of A to states of B that satis�es
the following two conditions�

�a� If s is a start state of A then r�s� is a start state of B�

�b� If s a�	A s� and both s and r�s� are reachable� then r�s� ���Br�s��� where 	 �
trace��s � a� s ����

�� A forward simulation from A to B is a relation between states of A and states of B
that satis�es the following two conditions�

�a� If s is a start state of A then there exists a start state u of B with �s� u� � f �

�b� If s a�	A s�� �s� u� � f and s and u are reachable� then there exists a state u� of B
such that u ���Bu

� and �s�� u�� � f � where 	 � trace��s � a� s ����

�� A history relation from A to B is a forward simulation from A to B whose inverse is a
re�nement from B to A�

�� A backward simulation from A to B is a relation between states of A and states of B
that satis�es the following three conditions�

�a� If s is a start state of A and u is a reachable state of B with �s� u� � b� then u is
a start state of B�

�b� If s a�	A s�� �s�� u�� � b and s and u� are reachable� then there exists a reachable
state u of B such that u ���Bu

� and �s� u� � b� where 	 � trace��s � a� s ����

�c� If s is a reachable state of A then there exists a reachable state u of B with
�s� u� � b�

�� A prophecy relation from A to B is a backward simulation from A to B whose inverse
is a re�nement from B to A�

A re�nement� forward simulation� etc� is called strong if in each case where one automaton
is required to simulate a step from the other automaton� this is possible with an execution

A� I�O automata and Simulations 	�

fragment consisting of exactly one step�� A relation R over S� and S� is image
�nite if for all
elements s� of S� there are only �nitely many elements s� of S� such that �s�� s�� � R�

Theorem �� ����� Let A and B be I�O automata with the same input and output actions�
respectively�

�� If there is a re�nement from A to B then traces�A� � traces�B��

�� If there is a forward simulation from A to B then traces�A� � traces�B��

�� If there is a history relation from A to B then traces�A� � traces�B��

	� If there is an image
�nite backward simulation from A to B then traces�A� � traces�B��

�� If there is an image
�nite prophecy relation from A to B then traces�A� � traces�B��

�Here we use the word �strong in the sense of 	���� Actually� the notions of simulation that we consider
here are �weak in the sense of 	�
� since their de�nitions include reachability conditions�

