
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a postprint version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/75301

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

http://hdl.handle.net/2066/75301

Modelling Clock Synchronization in the Chess gMAC WSN
Protocol*

M athijs Schuts Feng Zhu Faranak Heidarian^
Frits Vaandrager

Institute for Computing and Information Sciences
Radboud University Nijmegen

P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
M.Schuts@student.ru.nl, FengZhu@student.ru.nl, faranak@cs.ru.nl, F.Vaandrager@cs.ru.nl

We present a detailled timed automata model of the clock synchronization algorithm that is currently
being used in a wireless sensor network (WSN) that has been developed by the Dutch company
Chess. Using the U p p a a l model checker, we establish that in certain cases a static, fully synchro
nized network may eventually become unsynchronized if the current algorithm is used, even in a
setting with infinitesimal clock drifts.

1 Introduction

Wireless sensor networks consist of autonomous devices that communicate via radio and use sensors
to cooperatively monitor physical or environmental conditions. In this paper, we formally model and
analyze a distributed algorithm for clock synchronization in wireless sensor networks that has been de
veloped by the Dutch company Chess in the context of the MyriaNed project [15]. Figure 1 displays a
sensor node developed by Chess. The algorithm that we consider is part of the M edium A ccess Control

Figure 1: Chess MyriaNode 2.4 Ghz wireless sensor node

(MAC) layer, which is responsible for the access to the wireless shared channel. Within its so-called
gMAC protocol, Chess uses a Time Division Multiple Access (TDMA) protocol. Time is divided in
fixed length fram es, and each frame is subdivided into slo ts (see Figure 2). Slots can be either active or
sleeping (idle). During active slots, a node is either listening for incoming messages from neighboring
nodes (RX) or it is sending a message (TX). During sleeping slots a node is switched to energy saving
mode. Since energy efficiency is a major concern in the design of wireless sensor networks, the number

*Research supported by the European Community’s Seventh Framework Programme under grant agreement no 214755
(QUASIMODO) and by the DFG/NWO bilateral cooperation project ROCKS.

^Research supported by NWO/EW project 612.064.610 Abstraction Refinement for Timed Systems (ARTS).

S. Andova et.al. (Eds.): Workshop on Quantitative Formal Methods:
Theory and Applications (QFM’09)
EPTCS 13, 2009, pp. 41-54, doi:10.4204/EPTCS.13.4

mailto:M.Schuts@student.ru.nl
mailto:FengZhu@student.ru.nl
mailto:faranak@cs.ru.nl
mailto:F.Vaandrager@cs.ru.nl
http://dx.doi.org/10.4204/EPTCS.13.4

42 Modelling Clock Synchronization in the Chess gMAC WSN Protocol

Figure 2: The structure of a time frame

of active slots is typically much smaller than the total number of slots (less than 1% in the current im
plementation). The active slots are placed in one contiguous sequence which currently is placed at the
beginning of the frame. A node can only transmit a single message per time frame, during its TX slot.
The protocol takes care that neighboring nodes have different TX slots.

One of the greatest challenges in the design of the MAC layer is to find suitable mechanisms for clock
synchronization: we must ensure that whenever some node is sending all its neighbors are listening.
Sensor nodes come equipped with a crystal clock, which may drift. This may cause the TDMA time slot
boundaries to drift and thus lead to situations in which nodes get out of sync. To overcome this problem
nodes will have to adjust their clocks now and then. Also, the notion of guard time is introduced: at
the beginning of its TX slot, a sender waits a certain amount of time to ensure that all its neighbors
are ready to receive messages. Similarly, a sender does not transmit for a certain amount of time at the
end of its TX slot. In order to save energy it is important to reduce these guard times to a minimum.
Many clock synchronization protocols have been proposed for wireless sensor networks, see e.g. [16, 5,
17, 12, 1, 11, 14]. However, these protocols (with the exception of [17, 1] and possibly [14]) involve a
computation and/or communication overhead that is unacceptable given the extremely limited resources
(energy, memory, clock cycles) available within the Chess nodes.

To experiment with its designs, Chess currently builds prototypes and uses advanced simulation
tools. However, due to the huge number of possible network topologies and clock speeds of nodes, it
is difficult to discover flaws in the clock synchronization algorithm via these methods. Timed automata
model checking has been succesfully used for the analysis of worst case scenarios for protocols that
involve clock synchronization, see for instance [4, 8, 19]. To enable model checking, models need to
be much more abstract than for simulation, and also the size of networks that can be tackled is much
smaller, but the big advantage is that the full state space of the model can be explored.

In this paper, we present a detailed model of the Chess gMAC algorithm using the input language of
the timed automata model checking tool U ppaal [3]. Another U ppaal model for the gMAC algorithm
is presented in [9], but that model deviates and abstracts from several aspects in the implementation in
order to make verification feasible. The aim of the present paper is to construct a model that comes as
close as possible to the specification of the clock synchronization algorithm presented in [15]. Never
theless, our model still does not incorporate some features of the full algorithm and network, such as
dynamic slot allocation, synchronization messages, uncertain communication delays, and unreliable ra
dio communication. At places where the informal specification of [15] was incomplete or ambiguous,
the engineers from Chess kindly provided us with additional information on the way these issues are
resolved in the current implementation of the network [20]. In the current implementation of Chess, a
node can only adjust its clock once every time frame during the sleeping period, using an extension of

Schuts, Zhu, Heidarian and Vaandrager 43

the Median algorithm of [17]. This contrasts with the approach in [9] in which a sensor node may adjust
its clock after every received message. In the present paper we faithfully model the Median algorithm as
implemented by Chess. Another feature of the gMAC algorithm that was not addressed in [9] but that
we model in this paper is the radio switching time: there is some time involved in the transition from
sending mode to receiving mode (and vice versa), which in some cases may affect the correctness of the
algorithm.

The Median algorithm works reasonably well in practice, but by means of simulation experiments,
Assegei [1] already exposed some flaws in the algorithm: in some test cases where new nodes join or
networks merge, the algorithm fails to converge or nodes may stay out of sync for a certain period of
time. Our analysis with UPPAAL confirms these results. In fact, we show that the situation is even
worse: in certain cases a static, fully synchronized network may eventually become unsynchronized if
the Median algorithm is used, even in a setting with infinitesimal clock drifts.

In Section 2, we explain the gMAC algorithm in more detail. Section 3 describes our U ppaal model
of gMAC. In Section 4, the analysis results are described. Finally, in Section 5, we draw some conclu
sions. In this paper, we assume that the reader has some basic knowledge of the timed automaton tool
UPPAAL. For a detailed account of UPPAAL, we refer to [3, 2] and to h ttp ://w w w .u p p aa l.co m . The
UPPAAL model described in this paper is available at h t tp : / /w w w .m b s d .c s .r u .n l /p u b l ic a t io n s /
p a p e rs /fv a a n /c h e s s 0 9 / .

2 The gMAC Protocol

In this section we provide additional details about the gMAC protocol as it has currently been imple
mented by Chess.

2.1 The Synchronization Algorithm

In each frame, each node broadcasts one message to its neighbors. The timing of this message is used
for synchronization purposes: a receiver may estimate the clock value of a sender based on the time
when the message is received. Thus there is no need to send around (logical) clock values. In the
current implementation of Chess, clock synchronization is performed once per frame using the following
algorithm [1, 20]:

1. In its sending slot, a node broadcasts a packet which contains its transmission slot number.

2. Whenever a node receives a message it computes the phase e r r o r , that is the difference (number
of clock cycles) between the expected receiving time and the actual receiving time of the incoming
message. Note that the difference between the sender’s sending slot number (which is also the
current slot number of the sender) and the current slot number of the receiving node must also be
taken into account when calculating the phase errors.

3. After the last active slot of each frame, a node calculates the o f f s e t from the phase errors of all
incoming messages in this frame with the following algorithm:

i f (number of r e c e iv e d m essages == 0)
o f f s e t = 0;

e ls e i f (number of re c e iv e d m essages <= 2)
o f f s e t = th e phase e r r o r of th e f i r s t r e c e iv e d m essage * g a in ;

e ls e
o f f s e t = th e m edian of a l l phase e r r o r s * g a in

http://www.uppaal.com
http://www.mbsd.cs.ru.nl/publications/papers/fvaan/chess09/
http://www.mbsd.cs.ru.nl/publications/papers/fvaan/chess09/

44 Modelling Clock Synchronization in the Chess gMAC WSN Protocol

Here g a in is a coefficient with value 0.5, used to prevent oscillation of the clock adjustment.

4. During the sleeping period, the local clock of each node is adjusted by the computed o f f s e t
obtained from step 3.

In situations when two networks join, it is possible that the phases of these networks differ so much
that the nodes in one network are in active slots whereas the nodes in the other network are in sleeping
slots and vice versa. In this case, no messages can be exchanged between two networks. Therefore in
the Chess design, a node will send an extra message in one (randomly selected) sleeping slot to increase
the chance that networks can communicate and synchronize with each other. This slot is called the
synchronization slot and the message is in the same format as in the transmission slot. The extreme
value of o f f s e t can be obtained when two networks join: it may occur that the o f f s e t is larger than
half the total number of clock cycles of sleeping slots in a frame. Chess uses another algorithm called
j o in to handle this extreme case. We decided not to model joining of networks and synchronization
messages because currently we do not have enough information about the j o in algorithm.

2.2 Guard Time

The correctness condition for gMAC that we would like to establish is that whenever a node is sending
all its neighbors are in receiving mode. However, at the moment when a node enters its TX slot we
cannot guarantee, due to the phase errors, that its neighbors have entered the corresponding RX slot.
This problem is illustrated in Figure 3 (a). Given two nodes 1 and 2, if a message is transmitted during
the entire sending slot of node 1 then this message may not be successfully received by node 2 because
of the imperfect slot alignment. Taking the clock of node 1 as a reference, the clock of node 2 may drift
backwards or forwards. In this situation, node 1 and node 2 may have a different view of the current slot
number within the time interval where node 1 is sending a message.

Figure 3: The need for introducing guard times

To cope with this problem, messages are not transmitted during the entire sending slot but only in
the middle, as illustrated in Figure 3 (b). Both at the beginning and at the end of its sending slot, node 1
does not transmit for a preset period of g clock ticks, in order to accomodate the forwards and backwards
clock drift of node 2. Therefore, the time available for transmission equals the total length of the slot
minus 2g clock ticks.

Schuts, Zhu, Heidarian and Vaandrager 45

2.3 Radio Switching Time

The radio of a wireless sensor node can either be in sending mode, or in receiving mode, or in idle mode.
Switching from one mode to another takes time. In the current implementation of the Chess gMAC
protocol, the radio switching time is around 130^sec. The time between clock ticks is around 30 ^sec
and the guard time g is 9 clock ticks. Hence, in the current implementation the radio switching time is
smaller than the guard time, but this may change in future implementations. If the first slot in a frame is
an RX slot, then the radio is switched to receiving mode some time before the start of the frame to ensure
that the radio will receive during the full first slot. However if there is an RX slot after the TX slot then,
in order to keep the implementation simple, the radio is switched to the receiving mode only at the start
of the RX slot. Therefore messages arriving in such receiving slots may not be fully received. This issue
may also affect the performance of the synchronization algorithm.

3 Uppaal Model

In this section, we describe the U ppaal model that we constructed of the gMAC protocol.
We assume a finite, fixed set of wireless nodes Nodes = { 0 ,.. . , N — 1}. The behavior of an in

dividual node id G Nodes is described by five timed automata Clock(id), Receiver(id), Sender(id),
Synchronizer(id) and Controller(id). Figure 4 shows how these automata are interrelated. All com
ponents interact with the clock, although this is not shown in Figure 4. Automaton Clock(id) models
the hardware clock of node id, automaton Sender(id) the sending of messages by the radio, automa
ton Receiver(id) the receiving part of the radio, automaton Synchronizer(id) the synchronization of the
hardware clock, and automaton Controller(id) the control of the radio and the clock synchronization.

Synchronizer

Figure 4: Message flow in the model

Table 1 lists the parameters that are used in the model (constants in U ppaal terminology), together
with some basic constraints. The domain of all parameters is the set of natural numbers. We will now
describe the five automaton templates used in our model.

Clock Timed automaton Clock(id) models the behavior of the hardware clock of node id. The automa
ton is shown in Figure 5. At the start of the system state variable csn[id], that records the current slot
number, is initialized to C — 1, that is, to the last sleeping slot. Hardware clocks are not perfect and so
we assume a minimal time min[id] and a maximal time max[id] between successive clock ticks. Integer
variable clk[id] records the current value of the hardware clock. For convenience (and to reduce the size
of the state space), we assume that the hardware clock is reset at the end of each slot, that is after ko

46 Modelling Clock Synchronization in the Chess gMAC WSN Protocol

parameter Description Constraints
N number of nodes 0 < N
C number of slots in a time frame 0 < C
n number of active slots in a time frame 0 < n < C
tsn[id] TX slot number for node id 0 < tsn[id] < n
k0 number of clock ticks in a time slot 0 < ko
g guard time 0 < g
r radio switch time 0 < r
min[id] minimal time between two clock ticks of node id 0 < min[id]
max[id] maximal time between two clock ticks of node id min[id] < max[id]

Table 1: protocol parameters

clock ticks. Also, a state variable csn[id], which records the current slot number of node id, is updated
each time at the start of a new slot.

x >= min[id]
tick[id]!
x := 0,
clk[id] := (clk[id] + 1) % k0,
csn[id]:= (clk[id]==0)?((csn[id]+1)%C):csn[id]

Figure 5: Automaton Clock[id]

Sender The sending behavior of the radio is described by the automaton Sender[id] shown in Figure
6. The behavior is rather simple. When the controller asks the sender to transmit a message (via a

counter == r
start_message[id]!

Figure 6: Automaton Sender[id]

start_sending[id] signal), the radio first switches to sending mode (this takes r clock ticks) and then
transmits the message (this takes k0 — 2 ■ g ticks). Immediately after the message transmission has been
completed, an end_sending[id] signal is sent to the controller to indicate that the message has been sent.

Schuts, Zhu, Heidarian and Vaandrager 47

Receiver The automaton Receiver[id] models the receiving behavior of the radio. The automaton is
shown in Figure 7. Again the behavior is rather simple. When the controller asks the receiver to start
receiving, the receiver first switches to receiving mode (this takes r ticks). After that, the receiver may
receive messages from all its neighbors. A function neighbor is used to encode the topology of the
network: neighbor(j, id) holds if messages sent by j can be received by id. Whenever the receiver detects
the end of a message transmission by one of its neighbors, it immediately informs the synchronizer
via a message_received[id] signal. At any moment, the controller can switch off the receiver via an
end_receiving[id] signal.

Figure 7: Automaton Receiver[id]

Controller The task of the Controller[id] automaton, displayed in Figure 8, is to put the radio in sending
and receiving mode at the appropriate moments. Figure 9 shows the definition of the predicates used in
this automaton. The radio should be put in sending mode r ticks before message transmission starts (at
time g in the transmission slot of id). If r > g then the sender needs to be activated r — g ticks before
the end of the slot that precedes the transmission slot. Otherwise, the sender must be activated at tick
g — r of the transmission slot. If the first slot in a frame is an RX slot, then the radio is switched to
receiving mode r time units before the start of the frame to ensure that the radio will receive during the
full first slot. However if there is an RX slot after the TX slot then, as described in Section 2.3, the radio
is switched to the receiving mode only at the start of the RX slot. The controller stops the radio receiver
whenever either the last active slot has passed or the sender needs to be switched on.

bool go_send(){return (r>g)

?((csn[id]+1)°/0C==tsn[id] && clk[id]==k0-(r-g))

:(csn[id]==tsn[id] && clk[id]==g-r);}

bool go_receive(){return

(r>0 && 0!=tsn[id] && csn[id]==C-1 && clk[id]==k0-r)

|| (r==0 && 0!=tsn[id] && csn[id]==0)

|| (0<csn[id] && csn[id]<n && csn[id]-1==tsn[id]);}

bool go_sleep(){return csn[id]==n;}

go_send()
start_sending[id]!

go_receive()
start_receiving[id]!

go_sleep() || go_send()
end_receiving[id]!

Idle

Figure 8: Automaton Controller [id] Figure 9: Predicates used in Controller[id]

48 Modelling Clock Synchronization in the Chess gMAC WSN Protocol

All the channels used in the Controller[id] automaton (start_sending, end_sending, start_receiving,
end_receiving and synchronize) are urgent, which means that these signals are sent at the moment when
the transitions are enabled.

Synchronizer Finally, automaton Synchronizer[id] is shown in Figure 10. The automaton maintains a
list of phase differences of all messages received in the current frame, using a local array phase_errors.
Local variable msg_counter records the number of messages received. Whenever the receiver gets a mes-

void store_phase_error(int sender)

{

phase_errors[msg_counter] =

(tsn[sender] * k0 + k0 - g)

- (csn[id] * k0 + clk[id]);

msg_counter++

}

Figure 10: Automaton Synchronizer[id] Figure 11: Function used in Synchronizer[id]

sage from a neighboring node (message_received[id]), the synchronizer computes and stores the phase
difference using the function store_phase_error at the next clock tick. Here the phase difference is defined
as the expected time at which the message transmission ends (ts n [s e n d e r] * k0 + k0 - g) minus
the actual time at which the message transmission ends (c s n [id] * k0 + c lk [id]) , counting from
the start of the frame. The complete definition is listed in Figure 11. Recall that in our model we abstract
from transmission delays.

As explained in Section 2.1, the synchronizer computes the value of the phase correction (offset)
and adjusts the clock during the sleeping period of a frame.1 Hence, in order to decide in which slot we
may perform the synchronization, we need to know the maximal phase difference between two nodes. In
our model, we assume no joining of networks. When a node receives a message from another node, the
phase difference computed using this message will not exceed the length of an active period. Otherwise
one of these two nodes will be in sleeping period while the other is sending, hence no message can
be received at all. In practice, the number of sleeping slots is much larger than the number of active
slots. Therefore it is safe to perform the adjustment in the middle of sleeping period because the desired
property described above holds. When the value of g a in is smaller than 1 the maximal phase difference
will be even smaller.

The function of compute_phase_correction implements exactly the algorithm listed in Section 2.1.

4 Analysis Results

In this section, we present some verification results that we obtained for simple instances of the model
that we described in Section 3. We checked the following invariant properties using the U ppaal model
checker:

INV1 : A[] f o r a l i (i : Nodes) f o r a l i (j : Nodes)
SENDER(i).Sending && n e ig h b o r (i , j) im p ly RECEIV ER (j).Receiving

1Actually, in the implementation the offset is used to compute the corrected wakeup time, that is the moment when the next
frame will start [20]. In our model we reset the clock, but this should be equivalent.

tick[id]?
store_phase_error(sender[id])

urg!
csn[id] == (C+n)/2 && has_message()
offset := compute_phase_correction(),
clk[id] := (csn[id]*k0 + offset)%k0,
csn[id] := (csn[id]*k0 + offset)/k0,
clear_messages()

message_received[id]?

Schuts, Zhu, Heidarian and Vaandrager 49

INV2 : A[] f o r a l l (i:N o d es) f o r a l l (j:N o d es) f o r a l l (k:N odes)
SENDER(i).Sending && n e ig h b o r (i ,k) && SENDER(j).Sending && n e ig h b o r (j ,k)

im ply i == j

INV3 : A[] n o t dead lock

The first property states that always when some node is sending, all its neighbors are listening. The
second property states that never two different neighbors of a given node are sending simultaneously.
The third property states that the model contains no deadlock, in the sense that in each reachable state
at least one component can make progress. The three invariants are basic sanity properties of the gMAC
protocol, at least in a setting with a static topology and no transmission failures.

We used UPPAAL on a Sun Fire X4440 machine (with 4 Opteron 8356 2.3 Ghz quad-core proces
sors and 128 Gb DDR2-667 memory) to verify instances of our model with different number of nodes,
different network topologies and different parameter values. Table 2 lists some of our verification re
sults, including the resources UPPAAL needed to verify if the network is synchronized or not. In all
experiments, C = 10 and ko = 29.

Clearly, the values of network parameters, in particular clock parameters min and max, affect the
result of the verification. Table 2 shows several instances where the protocol is correct for perfect clocks
(min = max) but fails when we decrease the ratio man. It is easy to see that the protocol will always fail
when r > g. Consider any node i that is not the last one to transmit within a frame. Right after its sending
slot, node i needs r ticks to get its radio into receiving mode. This means that — even with perfect
clocks — after g ticks another node already has started sending even though the radio of node i is not yet
receiving. Even when r < g, the radio switching time has a clear impact on correctness: the larger the
radio switching time is, the larger the guard time has to be in order to ensure correctness. Using U ppa al ,
we can fully analyze line topologies with at most seven nodes if all clocks are perfect. For larger networks
UPPAAL runs out of memory. A full parametric analysis of this protocol will be challenging, also due to
the impact of the network topology and the selected slot allocation. Using U ppa al , we discovered that
for certain topologies and slot allocations the Median algorithm may always violate the above correctness
assertions, irrespective of the choice of the guard time. For example, in a 4 node-network with clique
topology and min and max of 100.000 and 100.001, respectively, if the median of the clock drifts of a
node becomes — 1, the median algorithm divides it by 2 and generates 0 for clock correction value and
indeed no synchronization happens. If this scenario repeats in three consecutive time frames for the same
node, that node runs g = 3 clock cycles behind and gets out of sync.

Another example in which the algorithm may fail is displayed in Figure 12. This network has 4
nodes, connected by a line topology, that send in slots 1, 2, 3, 1, respectively. Since all nodes have at

Figure 12: A problematic network configuration

most two neighbors, the Median algorithm prescribes that nodes will correct their clocks based on the
first phase error that they see in each frame. For the specific topology and slot allocation of Figure 12, this
means that node 0 adjusts its clock based on phase errors of messages it gets from node 1, node 1 adjusts

50 Modelling Clock Synchronization in the Chess gMAC WSN Protocol

N/n Topology g r min
max CPU Time Peak Memory Usage Sync

3/3 clique 2 0 1 1.944 s 2 4 ,180 KB YES
3/3 clique 2 0 100,000

100,001 492.533 s 158,064 KB NO
3/3 clique 2 1 1 1.976 s 68.144 KB YES
3/3 clique 2 0 100,000

100,001 116.68 s 68,144 KB NO
3/3 line 2 0 1 1.068 s 68,144 KB YES
3/3 line 2 0 100,000

100,000 441.308 s 68,144 KB NO
3/3 line 2 1 1 1.041 s 68,144 KB YES
3/3 line 2 1 100,000

100,000 99.274 s 68,144 KB NO
3/3 clique 3 0 1 1.851 s 28,040 KB YES
3/3 clique 3 0 100,000

100,001 575.085 s 272,312 KB NO
3/3 clique 4 0 350

351 115.166 s 516,636 KB NO
3/3 clique 4 0 351

352 147.864 s 630,044 KB YES
3/3 clique 3 2 1 1.827 s 2 4 ,184 KB YES
3/3 clique 3 2 100,000

100,001 109.633 s 26,056 KB NO
3/3 clique 4 2 100,000

100,001 533.345 s 350,504 KB NO
3/3 clique 5 2 587

588 72.473 s 332,552 KB NO
3/3 clique 5 2 588

589 99.101 s 407,884 KB YES
3/3 clique 3 5 1 0.076 s 21 ,884 KB NO
3/3 line 3 0 1 1.05 s 23,348 KB YES
3/3 line 3 0 451

452 29.545 s 148,012 KB NO
3/3 line 3 0 452

453 35.257 s 148,012 KB YES
3/3 line 3 2 1 1.052 s 22,916 KB YES
3/3 line 3 2 100,000

100,001 82.383 s 78 ,360 KB NO
3/3 line 4 2 100,000

100,001 414.201s 53,752 KB NO
3/3 line 5 2 453

454 33.16 s 147,796 KB NO
3/3 line 5 2 454

455 38.811 s 162,184 KB YES
3/3 line 3 5 1 0.048 s 78 ,360 KB NO
4/4 clique 3 0 1 231.297 s 1,437,643 KB YES
4 /4 clique 3 0 450

451 Memory Exhausted
4 /4 clique 3 2 1 229.469 s 1,438,368 KB YES
4 /4 clique 3 2 100,000

100,001 14,604.531 s 2,317,040 KB NO
4/3 line 3 0 1 4.749s s 94,748 KB YES
4/3 line 3 0 450

451 Memory Exhausted
4/3 line 3 2 1 4.738 s 94,748 KB YES
4/3 line 3 2 100,000

100,001 1,923.655 s 1,264,844 KB YES
5/5 clique 3 0 1 Memory Exhausted
5/5 clique 3 2 1 Memory Exhausted
5/3 line 3 0 1 46.54 s 249,976 KB YES
5/3 line 3 2 1 46.489 s 250,880 KB YES
6/3 line 3 0 1 508.19 s 2,316,416 KB YES
6/3 line 3 2 1 502.871 s 2,317,040 KB YES
7/3 line 3 0 1 Memory Exhausted
7/3 line 3 2 1 Memory Exhausted

Table 2: Model checking experiments

Schuts, Zhu, Heidarian and Vaandrager 51

its clock based on messages from node 0, node 2 adjusts its clock based on messages from node 3, and
node 3 adjusts its clock based on messages from node 2. Hence, for the purpose of clock synchronization,
we have two disconnected networks! Thus, if the clock rates of nodes 0 and 1 are lower than the clock
rates of nodes 2 and 3 by just an arbitrary small margin, then two subnetworks will eventually get out
of sync. These observations are consistent with results that we obtained using U ppa al . If, for instance,
we set min[id] = 99 and max[id] = 100, for all nodes id then neither INV1 nor INV2 holds. In practice,
it is unlikely that the above scenario will occur due to the fact that in the implementation slot allocation
is random and dynamic. Due to regular changes of the slot allocation, with high probability node 1 and
node 2 will now and then adjusts their clocks based on messages they receive from each other.

However, variations of the above scenario may occur in practice, even in a setting with dynamic slot
allocation. In fact, the above synchronization problem is also not restricted to line topologies. We call a
subset C of nodes in a network a community if each node in C has more neighbors within C than outside C
[13]. For any network in which two disjoint communities can be identified, the Median algorithm allows
for scenarios in which these two parts become unsynchronized. Due to the median voting mechanism, the
phase errors of nodes outside a community will not affect the nodes within this community, independent
of the slot allocation. Therefore, if nodes in one community A run slow and nodes in another community
B run fast then the network will become unsynchronized eventually, even in a setting with infinitesimal
clock drifts. Figure 13 gives an example of a network with two communities.

A

Figure 13: Another problematic network configuration with two communities

Using U ppa al , we succeeded to analyze instances of the simple network with two communities
displayed in Figure 14. The numbers on the vertices are the node identifiers and the transmission slot
numbers, respectively. Table 3 summarizes the results of our model checking experiments.

We still need to explore how realistic our counterexamples are. We believe that network topologies
with multiple communities occur in many WSN applications. Nevertheless, in practice the gMAC pro
tocol appears to perform quite well for static networks. It might be that problems do not occur so often
in practice due to the probabilistic distributions of clock drift and jitter.

52 Modelling Clock Synchronization in the Chess gMAC WSN Protocol

Figure 14: A network with two communities that we analyzed using UPPAAL

g r Fast Clock
Cycle Length

Slow Clock
Cycle Length

CPU Time Peak Memory Usage

2 0 1 1 Memory Exhausted
2 0 99 100 457.917 s 2 ,404 ,956 KB
2 1 99 100 445.148 s 2,418,032 KB
3 0 99 100 416.796 s 2,302,548 KB
3 2 1 1 Memory Exhausted
3 2 99 100 22.105 s 83,476 KB
3 2 451 452 798.121 s 3,859,104 KB
3 2 452 453 Memory Exhausted
4 0 99 100 424.935 s 2,323,004 KB
4 1 99 100 464.503 s 2 ,4 6 2 ,176 KB
4 2 99 100 420.742 s 2 ,323 ,952 KB

Table 3: Model checking experiments of a network with two communities

5 Conclusions

We presented a detailled U ppaal model of relevant parts of the clock synchronization algorithm that is
currently being used in a wireless sensor network that has been developed by Chess [15, 20]. The final
model that we presented here may look simple, but the road towards this model was long and we passed
through numerous intermediate versions on the way. Using UPPAAL, we established that in certain
cases a static, fully synchronized network may eventually become unsynchronized if the current Median
algorithm is used, even in a setting with infinitesimal clock drifts.

In [9], we proposed a slight variation of the gMAC algorithm that does not have the correctness
problems of the Median algorithm. However, our algorithm still has to be tested in practice. Assegei [1]
proposed and simulated three alternative algorithms, to be used instead of the Median algorithm, in order
to achieve decentralized, stable and energy-efficient synchronization of the Chess gMAC protocol. It
should be easy to construct U ppaal models for Assegei’s algorithms: basically, we only have to modify
the definition of the com pu te_phase_correc tion function. Recently, Pussente & Barbosa [14], also
proposed a very interesting new clock synchronization algorithm — in a somewhat different setting
— that achieves an O(1) worst-case skew between the logical clocks of neighbors. Much additional

Schuts, Zhu, Heidarian and Vaandrager 53

research is required to analyze correctness and performance of these algorithms in the realistic settings
of Chess with large networks, message loss, and network topologies that change dynamically. Starting
from our current U ppaal model, it should be relatively easy to construct models for the alternative
synchronization algorithms in order to explore their properties.

Analysis of clock synchronization algorithms for wireless sensor networks is an extremely challeng
ing area for quantitative formal methods. One challenge is to come up with the right abstractions that
will allow us to verify larger instances of our model. Another challenge is to make more detailled (prob
abilistic) models of radio communication and to apply probabilistic model checkers and specification
tools such as PRISM [10] and CaVi [6].

Several other recent papers report on the application of U ppaal for the analysis of protocols for
wireless sensor networks, see e.g. [7, 6, 18, 9]. In [21], U ppaal is also used to automatically test the
power consumption of wireless sensor networks. Our paper confirms the conclusions of [7, 18]: despite
the small number of nodes that can be analyzed, model checking provides valuable insight in the behavior
of protocols for wireless sensor networks, insight that is complementary to what can be learned through
the application of simulation and testing.

Acknowledgement We are most grateful to Frits van der Wateren for his patient explanations of the
subtleties of the gMAC protocol. We thank Hernan Baro Graf for spotting a mistake in an earlier version
of our model, and Mark Timmer for pointing us to the literature on communities in networks. Finally,
we thank the anonymous reviewers for their comments.

References

[1] F.A. Assegei (2008): Decentralized frame synchronization of a TDMA-based wireless sensor network. Mas
ter’s thesis, Eindhoven University of Technology, Department of Electrical Engineering.

[2] G. Behrmann, A. David, K. G. Larsen, J. Hâkansson, P. Pettersson, W. Yi & M. Hendriks (2006): Uppaal
4.0. In: Third International Conference on the Quantitative Evaluation o f SysTems (QEST 2006), 11-14
September 2006, Riverside, CA, USA. IEEE Computer Society, pp. 125-126.

[3] G. Behrmann, A. David & K.G. Larsen (2004): A Tutorial on Uppaal. In: M. Bernardo & F. Corradini,
editors: Formal Methods for the Design o f Real-Time Systems, International School on Formal Methods for
the Design o f Computer, Communication and Software Systems, SFM-RT 2004, Bertinoro, Italy, September
13-18, 2004, Revised Lectures, Lecture Notes in Computer Science 3185. Springer, pp. 200-236.

[4] J. Bengtsson, W.O.D. Griffioen, K.J. Kristoffersen, K.G. Larsen, F. Larsson, P. Pettersson & Wang Yi (1996):
Verification o f an Audio Protocol with Bus Collision Using UPPAAL. In: R. Alur & T.A. Henzinger, editors:
Proceedings o f the 8th International Conference on Computer Aided Verification, New Brunswick, NJ, USA,
Lecture Notes in Computer Science 1102. Springer-Verlag, pp. 244-256.

[5] R. Fan & N.A. Lynch (2006): Gradient Clock Synchronization. Distributed Computing 18(4), pp. 255-266.
[6] A. Fehnker, M. Fruth & A. McIver (2009): Graphical Modelling for Simulation and Formal Analysis of

Wireless Network Protocols. In: M. Butler, C.B. Jones, A. Romanovsky &E. Troubitsyna, editors: Methods,
Models and Tools for Fault Tolerance, Lecture Notes in Computer Science 5454. Springer, pp. 1-24.

[7] A. Fehnker, L. van Hoesel & A. Mader (2007): Modelling and Verification o f the LMAC Protocol for Wire
less Sensor Networks. In: J. Davies & J. Gibbons, editors: Integrated Formal Methods, 6th International
Conference, IFM 2007, Oxford, UK, July 2-5, 2007, Proceedings, Lecture Notes in Computer Science 4591.
Springer, pp. 253-272. Available at h ttp ://dx .do i.o rg /10 .1007/978-3-540-73210-5_14 .

[8] K. Havelund, A. Skou, K.G. Larsen & K. Lund (1997): Formal modeling and analysis o f an audio/video
protocol: an industrial case study using UPPAAL. In: Proceedings o f the 18th IEEE Real-Time Systems
Symposium (RTSS ’97), December 3-5, 1997, San Francisco, CA, USA. IEEE Computer Society, pp. 2-13.

http://dx.doi.org/10.1007/978-3-540-73210-5_14

54 Modelling Clock Synchronization in the Chess gMAC WSN Protocol

[9] F. Heidarian, J. Schmaltz & F.W. Vaandrager (2009): Analysis of a Clock Synchronization Protocol for Wire
less Sensor Networks. In: A. Cavalcanti & D. Dams, editors: Proceedings 16th International Symposium of
Formal Methods (FM2009), Eindhoven, the Netherlands, November 2-6, 2009, Lecture Notes in Computer
Science 5850. Springer, pp. 516-531.

[10] M.Z. Kwiatkowska, G. Norman & D. Parker (2004): PRISM 2.0: A Tool for Probabilistic Model Checking.
In: Proceedings o f the 1st International Conference on Quantitative Evaluation of Systems (QEST04). IEEE
Computer Society, pp. 322-323.

[11] C. Lenzen, T. Locher & R. Wattenhofer (2008): Clock Synchronization with Bounded Global and Local
Skew. In: 49th Annual IEEE Symposium on Foundations o f Computer Science, FOCS 2008, October 25-28,
2008, Philadelphia, PA, USA. IEEE Computer Society, pp. 509-518. Available at h t tp : / /d x .d o i .o r g /
10.1109/FÛCS.2008.10.

[12] L. Meier & L. Thiele (2005): Gradient Clock Synchronization in Sensor Networks. Technical Report 219,
Computer Engineering and Networks Laboratory, ETH Zurich.

[13] M.E.J. Newman (2004): Detecting community structure in networks. The European Physical Journal B 38,
pp. 321-330.

[14] R.M. Pussente & V.C. Barbosa (2009): An algorithm for clock synchronization with the gradi
ent property in sensor networks. Journal o f Parallel and Distributed Computing 69(3), pp. 261
- 265. Available at http://w w w .sciencedirect.com /science/article/B6W K J-4TY JTY 5-1/2/
38716d7d9f37c51edb8ba05e508fa2ce.

[15] QUASIMODO (2009). Preliminary description o f case studies. Available at http://www.quasimodo.
aau .d k /sa fe _ h tm l/in te rn a l/D e liv e ra b le s /F in a l/D e liv e ra b le -5 .2 .p d f . Deliverable 5.2 from
the FP7 ICT STREP project 214755 (QUASIMODO).

[16] B. Sundararaman, U. Buy & A. D. Kshemkalyani (2005): Clock synchronization for wireless sensor net
works: a survey. Ad Hoc Networks 3(3), pp. 281 - 323. Available at h ttp ://w w w .scienced irect.com /
science/article/B7576-4FDMVS4-1/2/63ed40b032c6bf3ad5fca7fdcbe9e35a.

[17] R. Tjoa, K.L. Chee, P.K. Sivaprasad, S.V. Rao & J.G Lim (2004): Clock drift reduction for relative time
slot TDMA-based sensor networks. In: Proceedings of the 15th IEEE International Symposium on Personal,
Indoor and Mobile Radio Communications (PIMRC2004). pp. 1042-1047.

[18] S. Tschirner, L. Xuedong & W. Yi (2008): Model-based validation of QoS properties o f biomedical sen
sor networks. In: L. de Alfaro & J. Palsberg, editors: Proceedings of the 8th ACM & IEEE International
conference on Embedded software, EMSOFT 2008, Atlanta, GA, USA, October 19-24, 2008. ACM, pp.
69-78.

[19] F.W. Vaandrager & A.L. de Groot (2006): Analysis o f a Biphase Mark Protocol with Uppaal and PVS.
Formal Aspects o f Computing Journal 18(4), pp. 433-458. Available at h t tp : / /w w w .i ta .c s .ru .n l /
publications/papers/fvaan/B M P.htm l.

[20] F. van der Wateren (2009). Personal communication.
[21] M. Woehrle, K. Lampka & L. Thiele (2009): Exploiting Timed Automata for Conformance Testing of

Power Measurements. In: J. Ouaknine & F. W. Vaandrager, editors: Formal Modeling and Analysis
of Timed Systems, 7th International Conference, FORMATS 2009, Budapest, Hungary, September 14
16, 2009. Proceedings, Lecture Notes in Computer Science 5813. Springer, pp. 275-290. Available at
h ttp ://dx .do i.o rg /10 .1007/978-3-642-04368-0_21 .

http://dx.doi.org/10.1109/FOCS.2008.10
http://dx.doi.org/10.1109/FOCS.2008.10
http://www.sciencedirect.com/science/article/B6WKJ-4TYJTY5-1/2/38716d7d9f37c51edb8ba05e508fa2ce
http://www.sciencedirect.com/science/article/B6WKJ-4TYJTY5-1/2/38716d7d9f37c51edb8ba05e508fa2ce
http://www.quasimodo.aau.dk/safe_html/internal/Deliverables/Final/Deliverable-5.2.pdf
http://www.quasimodo.aau.dk/safe_html/internal/Deliverables/Final/Deliverable-5.2.pdf
http://www.sciencedirect.com/science/article/B7576-4FDMVS4-1/2/63ed40b032c6bf3ad5fca7fdcbe9e35a
http://www.sciencedirect.com/science/article/B7576-4FDMVS4-1/2/63ed40b032c6bf3ad5fca7fdcbe9e35a
http://www.ita.cs.ru.nl/publications/papers/fvaan/BMP.html
http://www.ita.cs.ru.nl/publications/papers/fvaan/BMP.html
http://dx.doi.org/10.1007/978-3-642-04368-0_21

