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We present a detailled timed automata model of the clock synchronization algorithm that is currently 
being used in a wireless sensor network (WSN) that has been developed by the Dutch company 
Chess. Using the U p p a a l  model checker, we establish that in certain cases a static, fully synchro
nized network may eventually become unsynchronized if the current algorithm is used, even in a 
setting with infinitesimal clock drifts.

1 Introduction

Wireless sensor networks consist of autonomous devices that communicate via radio and use sensors 
to cooperatively monitor physical or environmental conditions. In this paper, we formally model and 
analyze a distributed algorithm for clock synchronization in wireless sensor networks that has been de
veloped by the Dutch company Chess in the context of the MyriaNed project [15]. Figure 1 displays a 
sensor node developed by Chess. The algorithm that we consider is part of the M edium  A ccess Control

Figure 1: Chess MyriaNode 2.4 Ghz wireless sensor node

(MAC) layer, which is responsible for the access to the wireless shared channel. Within its so-called 
gMAC protocol, Chess uses a Time Division Multiple Access (TDMA) protocol. Time is divided in 
fixed length fram es, and each frame is subdivided into slo ts (see Figure 2). Slots can be either active  or 
sleeping (idle). During active slots, a node is either listening for incoming messages from neighboring 
nodes (RX ) or it is sending a message (TX ). During sleeping slots a node is switched to energy saving 
mode. Since energy efficiency is a major concern in the design of wireless sensor networks, the number
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Figure 2: The structure of a time frame

of active slots is typically much smaller than the total number of slots (less than 1% in the current im
plementation). The active slots are placed in one contiguous sequence which currently is placed at the 
beginning of the frame. A node can only transmit a single message per time frame, during its TX slot. 
The protocol takes care that neighboring nodes have different TX slots.

One of the greatest challenges in the design of the MAC layer is to find suitable mechanisms for clock 
synchronization: we must ensure that whenever some node is sending all its neighbors are listening. 
Sensor nodes come equipped with a crystal clock, which may drift. This may cause the TDMA time slot 
boundaries to drift and thus lead to situations in which nodes get out of sync. To overcome this problem 
nodes will have to adjust their clocks now and then. Also, the notion of guard time is introduced: at 
the beginning of its TX slot, a sender waits a certain amount of time to ensure that all its neighbors 
are ready to receive messages. Similarly, a sender does not transmit for a certain amount of time at the 
end of its TX slot. In order to save energy it is important to reduce these guard times to a minimum. 
Many clock synchronization protocols have been proposed for wireless sensor networks, see e.g. [16, 5, 
17, 12, 1, 11, 14]. However, these protocols (with the exception of [17, 1] and possibly [14]) involve a 
computation and/or communication overhead that is unacceptable given the extremely limited resources 
(energy, memory, clock cycles) available within the Chess nodes.

To experiment with its designs, Chess currently builds prototypes and uses advanced simulation 
tools. However, due to the huge number of possible network topologies and clock speeds of nodes, it 
is difficult to discover flaws in the clock synchronization algorithm via these methods. Timed automata 
model checking has been succesfully used for the analysis of worst case scenarios for protocols that 
involve clock synchronization, see for instance [4, 8, 19]. To enable model checking, models need to 
be much more abstract than for simulation, and also the size of networks that can be tackled is much 
smaller, but the big advantage is that the full state space of the model can be explored.

In this paper, we present a detailed model of the Chess gMAC algorithm using the input language of 
the timed automata model checking tool U ppaal [3]. Another U ppaal model for the gMAC algorithm 
is presented in [9], but that model deviates and abstracts from several aspects in the implementation in 
order to make verification feasible. The aim of the present paper is to construct a model that comes as 
close as possible to the specification of the clock synchronization algorithm presented in [15]. Never
theless, our model still does not incorporate some features of the full algorithm and network, such as 
dynamic slot allocation, synchronization messages, uncertain communication delays, and unreliable ra
dio communication. At places where the informal specification of [15] was incomplete or ambiguous, 
the engineers from Chess kindly provided us with additional information on the way these issues are 
resolved in the current implementation of the network [20]. In the current implementation of Chess, a 
node can only adjust its clock once every time frame during the sleeping period, using an extension of
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the Median algorithm of [17]. This contrasts with the approach in [9] in which a sensor node may adjust 
its clock after every received message. In the present paper we faithfully model the Median algorithm as 
implemented by Chess. Another feature of the gMAC algorithm that was not addressed in [9] but that 
we model in this paper is the radio switching time: there is some time involved in the transition from 
sending mode to receiving mode (and vice versa), which in some cases may affect the correctness of the 
algorithm.

The Median algorithm works reasonably well in practice, but by means of simulation experiments, 
Assegei [1] already exposed some flaws in the algorithm: in some test cases where new nodes join or 
networks merge, the algorithm fails to converge or nodes may stay out of sync for a certain period of 
time. Our analysis with UPPAAL confirms these results. In fact, we show that the situation is even 
worse: in certain cases a static, fully synchronized network may eventually become unsynchronized if 
the Median algorithm is used, even in a setting with infinitesimal clock drifts.

In Section 2, we explain the gMAC algorithm in more detail. Section 3 describes our U ppaal model 
of gMAC. In Section 4, the analysis results are described. Finally, in Section 5, we draw some conclu
sions. In this paper, we assume that the reader has some basic knowledge of the timed automaton tool 
UPPAAL. For a detailed account of UPPAAL, we refer to [3, 2] and to h ttp ://w w w .u p p aa l.co m . The 
UPPAAL model described in this paper is available at h t tp : / /w w w .m b s d .c s .r u .n l /p u b l ic a t io n s /  
p a p e rs /fv a a n /c h e s s 0 9 / .

2 The gMAC Protocol

In this section we provide additional details about the gMAC protocol as it has currently been imple
mented by Chess.

2.1 The Synchronization Algorithm

In each frame, each node broadcasts one message to its neighbors. The timing of this message is used 
for synchronization purposes: a receiver may estimate the clock value of a sender based on the time 
when the message is received. Thus there is no need to send around (logical) clock values. In the 
current implementation of Chess, clock synchronization is performed once per frame using the following 
algorithm [1, 20]:

1. In its sending slot, a node broadcasts a packet which contains its transmission slot number.

2. Whenever a node receives a message it computes the phase  e r r o r ,  that is the difference (number 
of clock cycles) between the expected receiving time and the actual receiving time of the incoming 
message. Note that the difference between the sender’s sending slot number (which is also the 
current slot number of the sender) and the current slot number of the receiving node must also be 
taken into account when calculating the phase errors.

3. After the last active slot of each frame, a node calculates the o f f s e t  from the phase errors of all 
incoming messages in this frame with the following algorithm:

i f  (number of r e c e iv e d  m essages == 0) 
o f f s e t  = 0; 

e ls e  i f  (number of re c e iv e d  m essages <= 2)
o f f s e t  = th e  phase  e r r o r  of th e  f i r s t  r e c e iv e d  m essage * g a in ;

e ls e
o f f s e t  = th e  m edian of a l l  phase  e r r o r s  * g a in

http://www.uppaal.com
http://www.mbsd.cs.ru.nl/publications/papers/fvaan/chess09/
http://www.mbsd.cs.ru.nl/publications/papers/fvaan/chess09/
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Here g a in  is a coefficient with value 0.5, used to prevent oscillation of the clock adjustment.

4. During the sleeping period, the local clock of each node is adjusted by the computed o f f s e t  
obtained from step 3.

In situations when two networks join, it is possible that the phases of these networks differ so much 
that the nodes in one network are in active slots whereas the nodes in the other network are in sleeping 
slots and vice versa. In this case, no messages can be exchanged between two networks. Therefore in 
the Chess design, a node will send an extra message in one (randomly selected) sleeping slot to increase 
the chance that networks can communicate and synchronize with each other. This slot is called the 
synchronization slot and the message is in the same format as in the transmission slot. The extreme 
value of o f f s e t  can be obtained when two networks join: it may occur that the o f f s e t  is larger than 
half the total number of clock cycles of sleeping slots in a frame. Chess uses another algorithm called 
j o in  to handle this extreme case. We decided not to model joining of networks and synchronization 
messages because currently we do not have enough information about the j o in  algorithm.

2.2 Guard Time

The correctness condition for gMAC that we would like to establish is that whenever a node is sending 
all its neighbors are in receiving mode. However, at the moment when a node enters its TX slot we 
cannot guarantee, due to the phase errors, that its neighbors have entered the corresponding RX slot. 
This problem is illustrated in Figure 3 (a). Given two nodes 1 and 2, if a message is transmitted during 
the entire sending slot of node 1 then this message may not be successfully received by node 2 because 
of the imperfect slot alignment. Taking the clock of node 1 as a reference, the clock of node 2 may drift 
backwards or forwards. In this situation, node 1 and node 2 may have a different view of the current slot 
number within the time interval where node 1 is sending a message.

Figure 3: The need for introducing guard times

To cope with this problem, messages are not transmitted during the entire sending slot but only in 
the middle, as illustrated in Figure 3 (b). Both at the beginning and at the end of its sending slot, node 1 
does not transmit for a preset period of g clock ticks, in order to accomodate the forwards and backwards 
clock drift of node 2. Therefore, the time available for transmission equals the total length of the slot 
minus 2g clock ticks.
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2.3 Radio Switching Time

The radio of a wireless sensor node can either be in sending mode, or in receiving mode, or in idle mode. 
Switching from one mode to another takes time. In the current implementation of the Chess gMAC 
protocol, the radio switching time is around 130^sec. The time between clock ticks is around 30 ^sec 
and the guard time g is 9 clock ticks. Hence, in the current implementation the radio switching time is 
smaller than the guard time, but this may change in future implementations. If the first slot in a frame is 
an RX slot, then the radio is switched to receiving mode some time before the start of the frame to ensure 
that the radio will receive during the full first slot. However if there is an RX slot after the TX slot then, 
in order to keep the implementation simple, the radio is switched to the receiving mode only at the start 
of the RX slot. Therefore messages arriving in such receiving slots may not be fully received. This issue 
may also affect the performance of the synchronization algorithm.

3 Uppaal Model

In this section, we describe the U ppaal model that we constructed of the gMAC protocol.
We assume a finite, fixed set of wireless nodes Nodes =  { 0 ,.. . ,  N — 1}. The behavior of an in

dividual node id G Nodes is described by five timed automata Clock(id), Receiver(id), Sender(id), 
Synchronizer(id) and Controller(id). Figure 4 shows how these automata are interrelated. All com
ponents interact with the clock, although this is not shown in Figure 4. Automaton Clock(id) models 
the hardware clock of node id, automaton Sender(id) the sending of messages by the radio, automa
ton Receiver(id) the receiving part of the radio, automaton Synchronizer(id) the synchronization of the 
hardware clock, and automaton Controller(id) the control of the radio and the clock synchronization.

Synchronizer

Figure 4: Message flow in the model

Table 1 lists the parameters that are used in the model (constants in U ppaal terminology), together 
with some basic constraints. The domain of all parameters is the set of natural numbers. We will now 
describe the five automaton templates used in our model.

Clock Timed automaton Clock(id) models the behavior of the hardware clock of node id. The automa
ton is shown in Figure 5. At the start of the system state variable csn[id], that records the current slot 
number, is initialized to C — 1, that is, to the last sleeping slot. Hardware clocks are not perfect and so 
we assume a minimal time min[id] and a maximal time max[id] between successive clock ticks. Integer 
variable clk[id] records the current value of the hardware clock. For convenience (and to reduce the size 
of the state space), we assume that the hardware clock is reset at the end of each slot, that is after ko
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parameter Description Constraints
N number of nodes 0 <  N
C number of slots in a time frame 0 <  C
n number of active slots in a time frame 0 <  n <  C
tsn[id] TX slot number for node id 0 <  tsn[id] <  n
k0 number of clock ticks in a time slot 0 <  ko
g guard time 0 <  g
r radio switch time 0 <  r
min[id] minimal time between two clock ticks of node id 0 <  min[id]
max[id] maximal time between two clock ticks of node id min[id] <  max[id]

Table 1: protocol parameters

clock ticks. Also, a state variable csn[id], which records the current slot number of node id, is updated 
each time at the start of a new slot.

x >= min[id] 
tick[id]! 
x := 0,
clk[id] := (clk[id] + 1) % k0, 
csn[id]:= (clk[id]==0)?((csn[id]+1)%C):csn[id]

Figure 5: Automaton Clock[id]

Sender The sending behavior of the radio is described by the automaton Sender[id] shown in Figure 
6. The behavior is rather simple. When the controller asks the sender to transmit a message (via a

counter == r 
start_message[id]!

Figure 6: Automaton Sender[id]

start_sending[id] signal), the radio first switches to sending mode (this takes r clock ticks) and then 
transmits the message (this takes k0 — 2 ■ g ticks). Immediately after the message transmission has been 
completed, an end_sending[id] signal is sent to the controller to indicate that the message has been sent.
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Receiver The automaton Receiver[id] models the receiving behavior of the radio. The automaton is 
shown in Figure 7. Again the behavior is rather simple. When the controller asks the receiver to start 
receiving, the receiver first switches to receiving mode (this takes r ticks). After that, the receiver may 
receive messages from all its neighbors. A function neighbor is used to encode the topology of the 
network: neighbor(j, id) holds if messages sent by j can be received by id. Whenever the receiver detects 
the end of a message transmission by one of its neighbors, it immediately informs the synchronizer 
via a message_received[id] signal. At any moment, the controller can switch off the receiver via an 
end_receiving[id] signal.

Figure 7: Automaton Receiver[id]

Controller The task of the Controller[id] automaton, displayed in Figure 8, is to put the radio in sending 
and receiving mode at the appropriate moments. Figure 9 shows the definition of the predicates used in 
this automaton. The radio should be put in sending mode r ticks before message transmission starts (at 
time g in the transmission slot of id). If r >  g then the sender needs to be activated r — g ticks before 
the end of the slot that precedes the transmission slot. Otherwise, the sender must be activated at tick 
g — r of the transmission slot. If the first slot in a frame is an RX slot, then the radio is switched to 
receiving mode r time units before the start of the frame to ensure that the radio will receive during the 
full first slot. However if there is an RX slot after the TX slot then, as described in Section 2.3, the radio 
is switched to the receiving mode only at the start of the RX slot. The controller stops the radio receiver 
whenever either the last active slot has passed or the sender needs to be switched on.

bool go_send(){return (r>g)

?((csn[id]+1)°/0C==tsn[id] && clk[id]==k0-(r-g)) 

:(csn[id]==tsn[id] && clk[id]==g-r);}

bool go_receive(){return

(r>0 && 0!=tsn[id] && csn[id]==C-1 && clk[id]==k0-r) 

|| (r==0 && 0!=tsn[id] && csn[id]==0)

|| (0<csn[id] && csn[id]<n && csn[id]-1==tsn[id]);}

bool go_sleep(){return csn[id]==n;}

go_send()
start_sending[id]!

go_receive()
start_receiving[id]!

go_sleep() || go_send() 
end_receiving[id]!

Idle

Figure 8: Automaton Controller [id] Figure 9: Predicates used in Controller[id]
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All the channels used in the Controller[id] automaton (start_sending, end_sending, start_receiving, 
end_receiving and synchronize) are urgent, which means that these signals are sent at the moment when 
the transitions are enabled.

Synchronizer Finally, automaton Synchronizer[id] is shown in Figure 10. The automaton maintains a 
list of phase differences of all messages received in the current frame, using a local array phase_errors. 
Local variable msg_counter records the number of messages received. Whenever the receiver gets a mes-

void store_phase_error(int sender)

{

phase_errors[msg_counter] = 

(tsn[sender] * k0 + k0 - g)

- (csn[id] * k0 + clk[id]); 

msg_counter++

}

Figure 10: Automaton Synchronizer[id] Figure 11: Function used in Synchronizer[id]

sage from a neighboring node (message_received[id]), the synchronizer computes and stores the phase 
difference using the function store_phase_error at the next clock tick. Here the phase difference is defined 
as the expected time at which the message transmission ends ( ts n [ s e n d e r ]  * k0 + k0 -  g) minus 
the actual time at which the message transmission ends (c s n [ id ]  * k0 + c lk [ id ] ) ,  counting from 
the start of the frame. The complete definition is listed in Figure 11. Recall that in our model we abstract 
from transmission delays.

As explained in Section 2.1, the synchronizer computes the value of the phase correction (offset) 
and adjusts the clock during the sleeping period of a frame.1 Hence, in order to decide in which slot we 
may perform the synchronization, we need to know the maximal phase difference between two nodes. In 
our model, we assume no joining of networks. When a node receives a message from another node, the 
phase difference computed using this message will not exceed the length of an active period. Otherwise 
one of these two nodes will be in sleeping period while the other is sending, hence no message can 
be received at all. In practice, the number of sleeping slots is much larger than the number of active 
slots. Therefore it is safe to perform the adjustment in the middle of sleeping period because the desired 
property described above holds. When the value of g a in  is smaller than 1 the maximal phase difference 
will be even smaller.

The function of compute_phase_correction implements exactly the algorithm listed in Section 2.1.

4 Analysis Results

In this section, we present some verification results that we obtained for simple instances of the model 
that we described in Section 3. We checked the following invariant properties using the U ppaal model 
checker:

INV1 : A[] f o r a l i  ( i :  Nodes) f o r a l i  ( j  : Nodes)
SENDER(i).Sending && n e ig h b o r ( i , j ) im p ly  RECEIV ER (j).Receiving

1Actually, in the implementation the offset is used to compute the corrected wakeup time, that is the moment when the next 
frame will start [20]. In our model we reset the clock, but this should be equivalent.

tick[id]?
store_phase_error(sender[id])

urg!
csn[id] == (C+n)/2 && has_message() 
offset := compute_phase_correction(), 
clk[id] := (csn[id]*k0 + offset)%k0, 
csn[id] := (csn[id]*k0 + offset)/k0, 
clear_messages()

message_received[id]?
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INV2 : A[] f o r a l l  ( i:N o d es) f o r a l l  ( j:N o d es) f o r a l l  (k:N odes)
SENDER(i).Sending && n e ig h b o r ( i ,k )  && SENDER(j).Sending && n e ig h b o r ( j ,k )  

im ply i  == j

INV3 : A[] n o t dead lock

The first property states that always when some node is sending, all its neighbors are listening. The 
second property states that never two different neighbors of a given node are sending simultaneously. 
The third property states that the model contains no deadlock, in the sense that in each reachable state 
at least one component can make progress. The three invariants are basic sanity properties of the gMAC 
protocol, at least in a setting with a static topology and no transmission failures.

We used UPPAAL on a Sun Fire X4440 machine (with 4 Opteron 8356 2.3 Ghz quad-core proces
sors and 128 Gb DDR2-667 memory) to verify instances of our model with different number of nodes, 
different network topologies and different parameter values. Table 2 lists some of our verification re
sults, including the resources UPPAAL needed to verify if the network is synchronized or not. In all 
experiments, C =  10 and ko =  29.

Clearly, the values of network parameters, in particular clock parameters min and max, affect the 
result of the verification. Table 2 shows several instances where the protocol is correct for perfect clocks 
(min =  max) but fails when we decrease the ratio man. It is easy to see that the protocol will always fail 
when r >  g. Consider any node i that is not the last one to transmit within a frame. Right after its sending 
slot, node i needs r ticks to get its radio into receiving mode. This means that — even with perfect 
clocks — after g ticks another node already has started sending even though the radio of node i is not yet 
receiving. Even when r <  g, the radio switching time has a clear impact on correctness: the larger the 
radio switching time is, the larger the guard time has to be in order to ensure correctness. Using U ppa al , 
we can fully analyze line topologies with at most seven nodes if all clocks are perfect. For larger networks 
UPPAAL runs out of memory. A full parametric analysis of this protocol will be challenging, also due to 
the impact of the network topology and the selected slot allocation. Using U ppa al , we discovered that 
for certain topologies and slot allocations the Median algorithm may always violate the above correctness 
assertions, irrespective of the choice of the guard time. For example, in a 4 node-network with clique 
topology and min and max of 100.000 and 100.001, respectively, if  the median of the clock drifts of a 
node becomes — 1, the median algorithm divides it by 2 and generates 0 for clock correction value and 
indeed no synchronization happens. If this scenario repeats in three consecutive time frames for the same 
node, that node runs g =  3 clock cycles behind and gets out of sync.

Another example in which the algorithm may fail is displayed in Figure 12. This network has 4 
nodes, connected by a line topology, that send in slots 1, 2, 3, 1, respectively. Since all nodes have at

Figure 12: A problematic network configuration

most two neighbors, the Median algorithm prescribes that nodes will correct their clocks based on the 
first phase error that they see in each frame. For the specific topology and slot allocation of Figure 12, this 
means that node 0 adjusts its clock based on phase errors of messages it gets from node 1, node 1 adjusts
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N/n Topology g r min
max CPU Time Peak Memory Usage Sync

3/3 clique 2 0 1 1.944 s 2 4 ,180 KB YES
3/3 clique 2 0 100,000

100,001 492.533 s 158,064 KB NO
3/3 clique 2 1 1 1.976 s 68.144 KB YES
3/3 clique 2 0 100,000

100,001 116.68 s 68,144 KB NO
3/3 line 2 0 1 1.068 s 68,144 KB YES
3/3 line 2 0 100,000

100,000 441.308 s 68,144 KB NO
3/3 line 2 1 1 1.041 s 68,144 KB YES
3/3 line 2 1 100,000

100,000 99.274 s 68,144 KB NO
3/3 clique 3 0 1 1.851 s 28,040 KB YES
3/3 clique 3 0 100,000

100,001 575.085 s 272,312 KB NO
3/3 clique 4 0 350

351 115.166 s 516,636 KB NO
3/3 clique 4 0 351

352 147.864 s 630,044 KB YES
3/3 clique 3 2 1 1.827 s 2 4 ,184 KB YES
3/3 clique 3 2 100,000

100,001 109.633 s 26,056 KB NO
3/3 clique 4 2 100,000

100,001 533.345 s 350,504 KB NO
3/3 clique 5 2 587

588 72.473 s 332,552 KB NO
3/3 clique 5 2 588

589 99.101 s 407,884 KB YES
3/3 clique 3 5 1 0.076 s 21 ,884 KB NO
3/3 line 3 0 1 1.05 s 23,348 KB YES
3/3 line 3 0 451

452 29.545 s 148,012 KB NO
3/3 line 3 0 452

453 35.257 s 148,012 KB YES
3/3 line 3 2 1 1.052 s 22,916 KB YES
3/3 line 3 2 100,000

100,001 82.383 s 78 ,360 KB NO
3/3 line 4 2 100,000

100,001 414.201s 53,752 KB NO
3/3 line 5 2 453

454 33.16 s 147,796 KB NO
3/3 line 5 2 454

455 38.811 s 162,184 KB YES
3/3 line 3 5 1 0.048 s 78 ,360 KB NO
4/4 clique 3 0 1 231.297 s 1,437,643 KB YES
4 /4 clique 3 0 450

451 Memory Exhausted
4 /4 clique 3 2 1 229.469 s 1,438,368 KB YES
4 /4 clique 3 2 100,000

100,001 14,604.531 s 2,317,040 KB NO
4/3 line 3 0 1 4.749s s 94,748 KB YES
4/3 line 3 0 450

451 Memory Exhausted
4/3 line 3 2 1 4.738 s 94,748 KB YES
4/3 line 3 2 100,000

100,001 1,923.655 s 1,264,844 KB YES
5/5 clique 3 0 1 Memory Exhausted
5/5 clique 3 2 1 Memory Exhausted
5/3 line 3 0 1 46.54 s 249,976 KB YES
5/3 line 3 2 1 46.489 s 250,880 KB YES
6/3 line 3 0 1 508.19 s 2,316,416 KB YES
6/3 line 3 2 1 502.871 s 2,317,040 KB YES
7/3 line 3 0 1 Memory Exhausted
7/3 line 3 2 1 Memory Exhausted

Table 2: Model checking experiments
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its clock based on messages from node 0, node 2 adjusts its clock based on messages from node 3, and 
node 3 adjusts its clock based on messages from node 2. Hence, for the purpose of clock synchronization, 
we have two disconnected networks! Thus, if the clock rates of nodes 0 and 1 are lower than the clock 
rates of nodes 2 and 3 by just an arbitrary small margin, then two subnetworks will eventually get out 
of sync. These observations are consistent with results that we obtained using U ppa al . If, for instance, 
we set min[id] =  99 and max[id] =  100, for all nodes id then neither INV1 nor INV2 holds. In practice, 
it is unlikely that the above scenario will occur due to the fact that in the implementation slot allocation 
is random and dynamic. Due to regular changes of the slot allocation, with high probability node 1 and 
node 2 will now and then adjusts their clocks based on messages they receive from each other.

However, variations of the above scenario may occur in practice, even in a setting with dynamic slot 
allocation. In fact, the above synchronization problem is also not restricted to line topologies. We call a 
subset C of nodes in a network a community if  each node in C has more neighbors within C than outside C
[13]. For any network in which two disjoint communities can be identified, the Median algorithm allows 
for scenarios in which these two parts become unsynchronized. Due to the median voting mechanism, the 
phase errors of nodes outside a community will not affect the nodes within this community, independent 
of the slot allocation. Therefore, if nodes in one community A run slow and nodes in another community 
B run fast then the network will become unsynchronized eventually, even in a setting with infinitesimal 
clock drifts. Figure 13 gives an example of a network with two communities.

A

Figure 13: Another problematic network configuration with two communities

Using U ppa al , we succeeded to analyze instances of the simple network with two communities 
displayed in Figure 14. The numbers on the vertices are the node identifiers and the transmission slot 
numbers, respectively. Table 3 summarizes the results of our model checking experiments.

We still need to explore how realistic our counterexamples are. We believe that network topologies 
with multiple communities occur in many WSN applications. Nevertheless, in practice the gMAC pro
tocol appears to perform quite well for static networks. It might be that problems do not occur so often 
in practice due to the probabilistic distributions of clock drift and jitter.
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Figure 14: A network with two communities that we analyzed using UPPAAL

g r Fast Clock 
Cycle Length

Slow Clock 
Cycle Length

CPU Time Peak Memory Usage

2 0 1 1 Memory Exhausted
2 0 99 100 457.917 s 2 ,404 ,956 KB
2 1 99 100 445.148 s 2,418,032 KB
3 0 99 100 416.796 s 2,302,548 KB
3 2 1 1 Memory Exhausted
3 2 99 100 22.105 s 83,476 KB
3 2 451 452 798.121 s 3,859,104 KB
3 2 452 453 Memory Exhausted
4 0 99 100 424.935 s 2,323,004 KB
4 1 99 100 464.503 s 2 ,4 6 2 ,176 KB
4 2 99 100 420.742 s 2 ,323 ,952 KB

Table 3: Model checking experiments of a network with two communities

5 Conclusions

We presented a detailled U ppaal model of relevant parts of the clock synchronization algorithm that is 
currently being used in a wireless sensor network that has been developed by Chess [15, 20]. The final 
model that we presented here may look simple, but the road towards this model was long and we passed 
through numerous intermediate versions on the way. Using UPPAAL, we established that in certain 
cases a static, fully synchronized network may eventually become unsynchronized if the current Median 
algorithm is used, even in a setting with infinitesimal clock drifts.

In [9], we proposed a slight variation of the gMAC algorithm that does not have the correctness 
problems of the Median algorithm. However, our algorithm still has to be tested in practice. Assegei [1] 
proposed and simulated three alternative algorithms, to be used instead of the Median algorithm, in order 
to achieve decentralized, stable and energy-efficient synchronization of the Chess gMAC protocol. It 
should be easy to construct U ppaal models for Assegei’s algorithms: basically, we only have to modify 
the definition of the com pu te_phase_correc tion  function. Recently, Pussente & Barbosa [14], also 
proposed a very interesting new clock synchronization algorithm — in a somewhat different setting
— that achieves an O(1)  worst-case skew between the logical clocks of neighbors. Much additional
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research is required to analyze correctness and performance of these algorithms in the realistic settings 
of Chess with large networks, message loss, and network topologies that change dynamically. Starting 
from our current U ppaal model, it should be relatively easy to construct models for the alternative 
synchronization algorithms in order to explore their properties.

Analysis of clock synchronization algorithms for wireless sensor networks is an extremely challeng
ing area for quantitative formal methods. One challenge is to come up with the right abstractions that 
will allow us to verify larger instances of our model. Another challenge is to make more detailled (prob
abilistic) models of radio communication and to apply probabilistic model checkers and specification 
tools such as PRISM [10] and CaVi [6].

Several other recent papers report on the application of U ppaal for the analysis of protocols for 
wireless sensor networks, see e.g. [7, 6, 18, 9]. In [21], U ppaal is also used to automatically test the 
power consumption of wireless sensor networks. Our paper confirms the conclusions of [7, 18]: despite 
the small number of nodes that can be analyzed, model checking provides valuable insight in the behavior 
of protocols for wireless sensor networks, insight that is complementary to what can be learned through 
the application of simulation and testing.
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