45 research outputs found

    Significant loss of mitochondrial diversity within the last century due to extinction of peripheral populations in eastern gorillas

    Get PDF
    Species and populations are disappearing at an alarming rate as a direct result of human activities. Loss of genetic diversity associated with population decline directly impacts species' long-term survival. Therefore, preserving genetic diversity is of considerable conservation importance. However, to assist in conservation efforts, it is important to understand how genetic diversity is spatially distributed and how it changes due to anthropogenic pressures. In this study, we use historical museum and modern faecal samples of two critically endangered eastern gorilla taxa, Grauer's (Gorilla beringei graueri) and mountain gorillas (Gorilla beringei beringei), to directly infer temporal changes in genetic diversity within the last century. Using over 100 complete mitochondrial genomes, we observe a significant decline in haplotype and nucleotide diversity in Grauer's gorillas. By including historical samples from now extinct populations we show that this decline can be attributed to the loss of peripheral populations rather than a decrease in genetic diversity within the core range of the species. By directly quantifying genetic changes in the recent past, our study shows that human activities have severely impacted eastern gorilla genetic diversity within only four to five generations. This rapid loss calls for dedicated conservation actions, which should include preservation of the remaining peripheral populations.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Volcanic impacts on the Holocene vegetation history of Britain and Ireland? A review and meta-analysis of the pollen evidence

    Get PDF
    Volcanic ash layers show that the products of Icelandic volcanism reached Britain and Ireland many times during the Holocene. Historical records suggest that at least one eruption, that of Laki in a.d. 1783, was associated with impacts on vegetation. These results raise the question: did Icelandic volcanism affect the Holocene vegetation history of Britain and Ireland? Several studies have used pollen data to address this issue but no clear consensus has been reached. We re-analyse the palynological data using constrained ordination with various representations of potential volcanic impacts. We find that the palynological evidence for volcanic impacts on vegetation is weak but suggest that this is a case of absence of evidence and is not necessarily evidence of absence of impact. To increase the chances of identifying volcanic impacts, future studies need to maximise temporal resolution, replicate results, and investigate a greater number of tephras in a broader range of locations, including more studies from lake sediments

    Data from: The effect of neighborhood size on effective population size in theory and in practice

    No full text
    The distinction between the effective size of a population (Ne) and the effective size of its neighborhoods (Nn) has sometimes become blurred. Ne reflects the effect of random sampling on the genetic composition of a population of size N, whereas Nn is a measure of within-population spatial genetic structure and depends strongly on the dispersal characteristics of a species. Although Nn is independent of Ne, the reverse is not true. Using simulations of a population of annual plants, it was found that the effect of Nn on Ne was well approximated by Ne=N/(1−FIS), where FIS (determined by Nn) was evaluated population wide. Nn only had a notable influence of increasing Ne as it became smaller (less than or equal to16). In contrast, the effect of Nn on genetic estimates of Ne was substantial. Using the temporal method (a standard two-sample approach) based on 1000 single-nucleotide polymorphisms (SNPs), and varying sampling method, sample size (2–25% of N) and interval between samples (T=1–32 generations), estimates of Ne ranged from infinity to <0.1% of the true value (defined as Ne based on 100% sampling). Estimates were never accurate unless Nn and T were large. Three sampling techniques were tested: same-site resampling, different-site resampling and random sampling. Random sampling was the least biased method. Extremely low estimates often resulted when different-site resampling was used, especially when the population was large and the sample fraction was small, raising the possibility that this estimation bias could be a factor determining some very low Ne/N that have been published
    corecore