74 research outputs found

    Mechanical properties of Ti-6Al-4V selectively laser melted parts with body-centred-cubic lattices of varying cell size

    Get PDF
    Significant weight savings in parts can be made through the use of additive manufacture (AM), a process which enables the construction of more complex geometries, such as functionally graded lattices, than can be achieved conventionally. The existing framework describing the mechanical properties of lattices places strong emphasis on one property, the relative density of the repeating cells, but there are other properties to consider if lattices are to be used effectively. In this work, we explore the effects of cell size and number of cells, attempting to construct more complete models for the mechanical performance of lattices. This was achieved by examining the modulus and ultimate tensile strength of latticed tensile specimens with a range of unit cell sizes and fixed relative density. Understanding how these mechanical properties depend upon the lattice design variables is crucial for the development of design tools, such as finite element methods, that deliver the best performance from AM latticed parts. We observed significant reductions in modulus and strength with increasing cell size, and these reductions cannot be explained by increasing strut porosity as has previously been suggested. We obtained power law relationships for the mechanical properties of the latticed specimens as a function of cell size, which are similar in form to the existing laws for the relative density dependence. These can be used to predict the properties of latticed column structures comprised of body-centred-cubic (BCC) cells, and may also be adapted for other part geometries. In addition, we propose a novel way to analyse the tensile modulus data, which considers a relative lattice cell size rather than an absolute size. This may lead to more general models for the mechanical properties of lattice structures, applicable to parts of varying size

    Quantification and characterisation of porosity in selectively laser melted Al–Si10–Mg using x-ray computed tomography

    Get PDF
    We used X-ray computed tomography (CT), microscopy and hardness measurements to study Al–Si10–Mg produced by selective laser melting (SLM). Specimens were subject to a series of heat treatments including annealing and precipitation hardening. The specimen interiors were imaged with X-ray CT, allowing the non-destructive quantification and characterisation of pores, including their spatial distribution. The specimens had porosities less than 0.1%, but included some pores with effective cross-sectional diameters up to 260 μm. The largest pores were highly anisotropic, being flat and lying in the plane normal to the build direction. Annealing cycles caused significant coarsening of the microstructure and a reduction of the hardness from (114 ± 3) HV, in the as-built state, to (45 ± 1) HV, while precipitation hardening increased this to a final hardness of (59 ± 1) HV. The pore size and shape distributions were unaffected by the heat treatments. We demonstrate the applicability of CT measurements and quantitative defect analysis for the purposes of SLM process monitoring and refinement

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Impact of nitrogen seeding on confinement and power load control of a high-triangularity JET ELMy H-mode plasma with a metal wall

    Get PDF
    This paper reports the impact on confinement and power load of the high-shape 2.5MA ELMy H-mode scenario at JET of a change from an all carbon plasma facing components to an all metal wall. In preparation to this change, systematic studies of power load reduction and impact on confinement as a result of fuelling in combination with nitrogen seeding were carried out in JET-C and are compared to their counterpart in JET with a metallic wall. An unexpected and significant change is reported on the decrease of the pedestal confinement but is partially recovered with the injection of nitrogen.Comment: 30 pages, 16 figure

    Medical andTechnological Application of Monodispersed Colloidal Silica Particles

    No full text

    Medical and Technological Application of Monodispersed Colloidal Silica Particles

    No full text

    A tecnologia e a realização do trabalho

    No full text

    Overview of JET results

    No full text
    Since the last IAEA conference, the scientific programme of JET has focused on the qualification of the integrated operating scenarios for ITER and on physics issues essential for the consolidation of design choices and the efficient exploitation of ITER. Particular attention has been given to the characterization of the edge plasma, pedestal energy and edge localized modes (ELMs), and their impact on plasma facing components (PFCs). Various ELM mitigation techniques have been assessed for all ITER operating scenarios using active methods such as resonant magnetic field perturbation, rapid variation of the radial field and pellet pacing. In particular, the amplitude and frequency of type I ELMs have been actively controlled over a wide parameter range (q95 = 3-4.8, βN ≥ 3.0) by adjusting the amplitude of the n = 1 external perturbation field induced by error field correction coils. The study of disruption induced heat loads on PFCs has taken advantage of a new wide-angle viewing infrared system and a fast bolometer to provide a detailed account of time, localization and form of the energy deposition. Specific ITER-relevant studies have used the unique JET capability of varying the toroidal field (TF) ripple from its normal low value δBT = 0.08% up to δBT = 1% to study the effect of TF ripple on high confinement-mode plasmas. The results suggest that δBT < 0.5% is required on ITER to maintain adequate confinement to allow QDT = 10 at full field. Physics issues of direct relevance to ITER include heat and toroidal momentum transport, with experiments using power modulation to decouple power input and torque to achieve first experimental evidence of inward momentum pinch in JET and determine the threshold for ion temperature gradient driven modes. Within the longer term JET programme in support of ITER, activities aiming at the modification of the JET first wall and divertor and the upgrade of the neutral beam and plasma control systems are being conducted. The procurement of all components will be completed by 2009 with the shutdown for the installation of the beryllium wall and tungsten divertor extending from summer 2009 to summer 2010
    corecore