10 research outputs found

    LifeCLEF 2016: Multimedia Life Species Identification Challenges

    Get PDF
    International audienceUsing multimedia identification tools is considered as one of the most promising solutions to help bridge the taxonomic gap and build accurate knowledge of the identity, the geographic distribution and the evolution of living species. Large and structured communities of nature observers (e.g., iSpot, Xeno-canto, Tela Botanica, etc.) as well as big monitoring equipment have actually started to produce outstanding collections of multimedia records. Unfortunately, the performance of the state-of-the-art analysis techniques on such data is still not well understood and is far from reaching real world requirements. The LifeCLEF lab proposes to evaluate these challenges around 3 tasks related to multimedia information retrieval and fine-grained classification problems in 3 domains. Each task is based on large volumes of real-world data and the measured challenges are defined in collaboration with biologists and environmental stakeholders to reflect realistic usage scenarios. For each task, we report the methodology, the data sets as well as the results and the main outcom

    LifeCLEF 2015: Multimedia Life Species Identification Challenges

    Get PDF
    International audienceUsing multimedia identification tools is considered as one of the most promising solutions to help bridging the taxonomic gap and build accurate knowledge of the identity, the geographic distribution and the evolution of living species. Large and structured communities of nature observers (e.g. eBird, Xeno-canto, Tela Botanica, etc.) as well as big monitoring equipments have actually started to produce outstanding collections of multimedia records. Unfortunately, the performance of the state-of-the-art analysis techniques on such data is still not well understood and is far from reaching the real world’s requirements. The LifeCLEF lab proposes to evaluate these challenges around three tasks related to multimedia information retrieval and fine-grained classification problems in three living worlds. Each task is based on large and real-world data and the measured challenges are defined in collaboration with biologists and environmental stakeholders in order to reflect realistic usage scenarios. This paper presents more particularly the 2014 edition of LifeCLEF, i.e. the pilot one. For each of the three tasks, we report the methodology and the datasets as well as the official results and the main outcomes

    Biodiversity information retrieval through large scale content-based identification: a long-term evaluation

    Get PDF
    Identifying and naming living plants or animals is usually impossible for the general public and often a difficult task for professionals and naturalists. Bridging this gap is a key challenge towards enabling effective biodiversity information retrieval systems. This taxonomic gap was actually already identified as one of the main ecological challenges to be solved during the Rio de Janeiro United Nations “Earth Summit” in 1992. Since 2011, the LifeCLEF challenges conducted in the context of the CLEF evaluation forum have been boosting and evaluating the advances in this domain. Data collections with an unprecedented volume and diversity have been shared with the scientific community to allow repeatable and long-term experiments. This paper describes the methodology of the conducted evaluation campaigns as well as providing a synthesis of the main results and lessons learned along the years

    Overview of LifeCLEF 2018: A Large-Scale Evaluation of Species Identification and Recommendation Algorithms in the Era of AI

    No full text
    International audienceBuilding accurate knowledge of the identity, the geographic distribution and the evolution of living species is essential for a sustainable development of humanity, as well as for biodiversity conservation. Unfortunately, such basic information is often only partially available for professional stakeholders, teachers, scientists and citizens, and often incomplete for ecosystems that possess the highest diversity. In this context, an ultimate ambition is to set up innovative information systems relying on the automated identification and understanding of living organisms as a means to engage massive crowds of observers and boost the production of biodiversity and agro-biodiversity data. The Life-CLEF 2018 initiative proposes three data-oriented challenges related to this vision, in the continuity of the previous editions, but with several consistent novelties intended to push the boundaries of the state-of-the-art in several research directions. This paper describes the methodology of the conducted evaluations as well as the synthesis of the main results and lessons learned

    Overview of LifeCLEF 2020: A System-Oriented Evaluation of Automated Species Identification and Species Distribution Prediction

    Get PDF
    Building accurate knowledge of the identity, the geographic distribution and the evolution of species is essential for the sustainable development of humanity, as well as for biodiversity conservation. However, the difficulty of identifying plants and animals in the field is hindering the aggregation of new data and knowledge. Identifying and naming living plants or animals is almost impossible for the general public and is often difficult even for professionals and naturalists. Bridging this gap is a key step towards enabling effective biodiversity monitoring systems. The LifeCLEF campaign, presented in this paper, has been promoting and evaluating advances in this domain since 2011. The 2020 edition proposes four data-oriented challenges related to the identification and prediction of biodiversity: (i) PlantCLEF: cross-domain plant identification based on herbarium sheets (ii) BirdCLEF: bird species recognition in audio soundscapes, (iii) GeoLifeCLEF: location-based prediction of species based on environmental and occurrence data, and (iv) SnakeCLEF: snake identification based on image and geographic location

    Ubiquitin carboxyl-terminal hydrolases: involvement in cancer progression and clinical implications

    No full text
    corecore