859 research outputs found

    FACT -- the First Cherenkov Telescope using a G-APD Camera for TeV Gamma-ray Astronomy (HEAD 2010)

    Get PDF
    Geiger-mode Avalanche Photodiodes (G-APD) bear the potential to significantly improve the sensitivity of Imaging Air Cherenkov Telescopes (IACT). We are currently building the First G-APD Cherenkov Telescope (FACT) by refurbishing an old IACT with a mirror area of 9.5 square meters and construct a new, fine pixelized camera using novel G-APDs. The main goal is to evaluate the performance of a complete system by observing very high energy gamma-rays from the Crab Nebula. This is an important field test to check the feasibility of G-APD-based cameras to replace at some time the PMT-based cameras of planned future IACTs like AGIS and CTA. In this article, we present the basic design of such a camera as well as some important details to be taken into account.Comment: Poster shown at HEAD 2010, Big Island, Hawaii, March 1-4, 201

    FACT -- The G-APD revolution in Cherenkov astronomy

    Full text link
    Since two years, the FACT telescope is operating on the Canary Island of La Palma. Apart from its purpose to serve as a monitoring facility for the brightest TeV blazars, it was built as a major step to establish solid state photon counters as detectors in Cherenkov astronomy. The camera of the First G-APD Cherenkov Telesope comprises 1440 Geiger-mode avalanche photo diodes (G-APD), equipped with solid light guides to increase the effective light collection area of each sensor. Since no sense-line is available, a special challenge is to keep the applied voltage stable although the current drawn by the G-APD depends on the flux of night-sky background photons significantly varying with ambient light conditions. Methods have been developed to keep the temperature and voltage dependent response of the G-APDs stable during operation. As a cross-check, dark count spectra with high statistics have been taken under different environmental conditions. In this presentation, the project, the developed methods and the experience from two years of operation of the first G-APD based camera in Cherenkov astronomy under changing environmental conditions will be presented.Comment: Proceedings of the Nuclear Science Symposium and Medical Imaging Conference (IEEE-NSS/MIC), 201

    FACT - The First G-APD Cherenkov Telescope: Status and Results

    Full text link
    The First G-APD Cherenkov telescope (FACT) is the first telescope using silicon photon detectors (G-APD aka. SiPM). It is built on the mount of the HEGRA CT3 telescope, still located at the Observatorio del Roque de los Muchachos, and it is successfully in operation since Oct. 2011. The use of Silicon devices promises a higher photon detection efficiency, more robustness and higher precision than photo-multiplier tubes. The FACT collaboration is investigating with which precision these devices can be operated on the long-term. Currently, the telescope is successfully operated from remote and robotic operation is under development. During the past months of operation, the foreseen monitoring program of the brightest known TeV blazars has been carried out, and first physics results have been obtained including a strong flare of Mrk501. An instantaneous flare alert system is already in a testing phase. This presentation will give an overview of the project and summarize its goals, status and first results

    A Study of Cosmic Ray Secondaries Induced by the Mir Space Station Using AMS-01

    Get PDF
    The Alpha Magnetic Spectrometer (AMS-02) is a high energy particle physics experiment that will study cosmic rays in the 100MeV\sim 100 \mathrm{MeV} to 1TeV1 \mathrm{TeV} range and will be installed on the International Space Station (ISS) for at least 3 years. A first version of AMS-02, AMS-01, flew aboard the space shuttle \emph{Discovery} from June 2 to June 12, 1998, and collected 10810^8 cosmic ray triggers. Part of the \emph{Mir} space station was within the AMS-01 field of view during the four day \emph{Mir} docking phase of this flight. We have reconstructed an image of this part of the \emph{Mir} space station using secondary π\pi^- and μ\mu^- emissions from primary cosmic rays interacting with \emph{Mir}. This is the first time this reconstruction was performed in AMS-01, and it is important for understanding potential backgrounds during the 3 year AMS-02 mission.Comment: To be submitted to NIM B Added material requested by referee. Minor stylistic and grammer change

    Search for Branons at LEP

    Full text link
    We search, in the context of extra-dimension scenarios, for the possible existence of brane fluctuations, called branons. Events with a single photon or a single Z-boson and missing energy and momentum collected with the L3 detector in e^+ e^- collisions at centre-of-mass energies sqrt{s}=189-209$ GeV are analysed. No excess over the Standard Model expectations is found and a lower limit at 95% confidence level of 103 GeV is derived for the mass of branons, for a scenario with small brane tensions. Alternatively, under the assumption of a light branon, brane tensions below 180 GeV are excluded

    Study of Spin and Decay-Plane Correlations of W Bosons in the e+e- -> W+W- Process at LEP

    Get PDF
    Data collected at LEP at centre-of-mass energies \sqrt(s) = 189 - 209 GeV are used to study correlations of the spin of W bosons using e+e- -> W+W- -> lnqq~ events. Spin correlations are favoured by data, and found to agree with the Standard Model predictions. In addition, correlations between the W-boson decay planes are studied in e+e- -> W+W- -> lnqq~ and e+e- -> W+W- -> qq~qq~ events. Decay-plane correlations, consistent with zero and with the Standard Model predictions, are measured

    Ultrarelativistic sources in nonlinear electrodynamics

    Get PDF
    The fields of rapidly moving sources are studied within nonlinear electrodynamics by boosting the fields of sources at rest. As a consequence of the ultrarelativistic limit the delta-like electromagnetic shock waves are found. The character of the field within the shock depends on the theory of nonlinear electrodynamics considered. In particular, we obtain the field of an ultrarelativistic charge in the Born-Infeld theory.Comment: 10 pages, 3 figure

    Measurement of the Cross Section for Open-Beauty Production in Photon-Photon Collisions at LEP

    Get PDF
    The cross section for open-beauty production in photon-photon collisions is measured using the whole high-energy and high-luminosity data sample collected by the L3 detector at LEP. This corresponds to 627/pb of integrated luminosity for electron-positron centre-of-mass energies from 189GeV to 209GeV. Events containing b quarks are identified through their semi-leptonic decay into electrons or muons. The e+e- -> e+e-b b~X cross section is measured within our fiducial volume and then extrapolated to the full phase space. These results are found to be in significant excess with respect to Monte Carlo predictions and next-to-leading order QCD calculations

    Search for Branons at LEP

    Get PDF
    We search, in the context of extra-dimension scenarios, for the possible existence of brane fluctuations, called branons. Events with a single photon or a single Z-boson and missing energy and momentum collected with the L3 detector in e^+ e^- collisions at centre-of-mass energies sqrt{s}=189-209$ GeV are analysed. No excess over the Standard Model expectations is found and a lower limit at 95% confidence level of 103 GeV is derived for the mass of branons, for a scenario with small brane tensions. Alternatively, under the assumption of a light branon, brane tensions below 180 GeV are excluded

    Measurement of Exclusive rho^0 rho^0 Production in Two-Photon Collisions at High Q^2 at LEP

    Full text link
    Exclusive rho rho production in two-photon collisions involving a single highly virtual photon is studied with data collected at LEP at centre-of-mass energies 89GeV < \sqrt{s} < 209GeV with a total integrated luminosity of 854.7pb^-1 The cross section of the process gamma gamma^* -> rho rho is determined as a function of the photon virtuality, Q^2 and the two-photon centre-of-mass energy, Wgg, in the kinematic region: 1.2GeV^2 < Q^2 < 30GeV^2 and 1.1GeV < Wgg < 3GeV
    corecore