568 research outputs found

    Nuclear Pairing: Surface or Bulk ?

    Get PDF
    We analyse how the spatial localisation properties of pairing correlations are changing in a major neutron shell of heavy nuclei. It is shown that the radial distribution of the pairing density depends strongly on whether the chemical potential is close to a low or a high angular momentum level and has very little sensitivity to whether the pairing force acts in the surface or in the bulk. The averaged pairing density over one major shell is however rather flat, practically independent of the pairing force. Hartree-Fock-Bogoliubov calculations for the isotopic chain 100132^{100-132}Sn are presented for demonstration purposes.Comment: 12 pages, 5 figure

    Pairing Matrix Elements and Pairing Gaps with Bare, Effective and Induced Interactions

    Get PDF
    The dependence on the single-particle states of the pairing matrix elements of the Gogny force and of the bare low-momentum nucleon-nucleon potential vlowkv_{low-k} is studied in the semiclassical approximation for the case of a typical finite, superfluid nucleus (120^{120}Sn). It is found that the matrix elements of vlowkv_{low-k} follow closely those of vGognyv_{Gogny} on a wide range of energy values around the Fermi energy eFe_F, those associated with vlowkv_{low-k} being less attractive. This result explains the fact that around eFe_F the pairing gap ΔGogny\Delta_{Gogny} associated with the Gogny interaction (and with a density of single-particle levels corresponding to an effective kk-mass mk0.7mm_k\approx 0.7 m) is a factor of about 2 larger than Δlowk\Delta_{low-k},being in agreement with Δexp\Delta_{exp}= 1.4 MeV. The exchange of low-lying collective surface vibrations among pairs of nucleons moving in time-reversal states gives rise to an induced pairing interaction vindv_{ind} peaked at eFe_F. The interaction (vlowk+vind)Zω(v_{low-k}+ v_{ind})Z_{\omega} arising from the renormalization of the bare nucleon-nucleon potential and of the single-particle motion (ω\omega-mass and quasiparticle strength ZωZ_{\omega}) due to the particle-vibration coupling leads to a value of the pairing gap at the Fermi energy Δren\Delta_{ren} which accounts for the experimental value

    Worldline approach to noncommutative field theory

    Full text link
    The study of the heat-trace expansion in noncommutative field theory has shown the existence of Moyal nonlocal Seeley-DeWitt coefficients which are related to the UV/IR mixing and manifest, in some cases, the non-renormalizability of the theory. We show that these models can be studied in a worldline approach implemented in phase space and arrive to a master formula for the nn-point contribution to the heat-trace expansion. This formulation could be useful in understanding some open problems in this area, as the heat-trace expansion for the noncommutative torus or the introduction of renormalizing terms in the action, as well as for generalizations to other nonlocal operators.Comment: 19 pages, version

    Energy density functional on a microscopic basis

    Full text link
    In recent years impressive progress has been made in the development of highly accurate energy density functionals, which allow to treat medium-heavy nuclei. In this approach one tries to describe not only the ground state but also the first relevant excited states. In general, higher accuracy requires a larger set of parameters, which must be carefully chosen to avoid redundancy. Following this line of development, it is unavoidable that the connection of the functional with the bare nucleon-nucleon interaction becomes more and more elusive. In principle, the construction of a density functional from a density matrix expansion based on the effective nucleon-nucleon interaction is possible, and indeed the approach has been followed by few authors. However, to what extent a density functional based on such a microscopic approach can reach the accuracy of the fully phenomenological ones remains an open question. A related question is to establish which part of a functional can be actually derived by a microscopic approach and which part, on the contrary, must be left as purely phenomenological. In this paper we discuss the main problems that are encountered when the microscopic approach is followed. To this purpose we will use the method we have recently introduced to illustrate the different aspects of these problems. In particular we will discuss the possible connection of the density functional with the nuclear matter Equation of State and the distinct features of finite size effects proper of nuclei.Comment: 20 pages, 6 figures,Contribution to J. Phys G, Special Issue, Focus Section: Open Problems in Nuclear Structur

    Chorus acceleration of radiation belt relativistic electrons during March 2013 geomagnetic storm

    Get PDF
    Abstract The recent launching of Van Allen probes provides an unprecedent opportunity to investigate variations of the radiation belt relativistic electrons. During the 17-19 March 2013 storm, the Van Allen probes simultaneously detected strong chorus waves and substantial increases in fluxes of relativistic (2 - 4.5 MeV) electrons around L = 4.5. Chorus waves occurred within the lower band 0.1-0.5fce (theelectron equatorial gyrofrequency), with a peak spectral density ∼10-4 nT 2/Hz. Correspondingly, relativistic electron fluxes increased by a factor of 102-103 during the recovery phase compared to the main phase levels. By means of a Gaussian fit to the observed chorus spectra, the drift and bounce-averaged diffusion coefficients are calculated and then used to solve a 2-D Fokker-Planck diffusion equation. Numerical simulations demonstrate that the lower-band chorus waves indeed produce such huge enhancements in relativistic electron fluxes within 15 h, fitting well with the observation. Key Points Initial RBSP correlated data of chorus waves and relativistic electron fluxes A realistic simulation to examine effect of chorus on relativistic electron flux Chorus yields huge increases inelectron flux rapidly, consistent with data

    Moment of inertia of a trapped superfluid gas of Fermions

    Get PDF
    The moment of inertia Q of a trapped superfluid gas of atomic Fermions (6Li) is calculated as a function of the temperature. At zero temperature the moment of inertia takes on the irrotational flow value. Only for T very close to Tc rigid rotation is attained. It is proposed that future measurements of the rotational energy will unambiguously reveal whether the system is in a superfluid state or not.Comment: 43 pages, 5 figures ; accepted in Phys. Rev.

    Cova Eirós (Galicia, Spain): The 'Finisterre' of Paleolithic cave art

    Get PDF
    Our knowledge about Paleolithic art has been changing substantially and new discoveries and dates are modifying some traditionally accepted considerations. In this context, the geographic spread and the end of this graphic-artistic cycle are two of the main topics of the current scientific debate. The discovery and study of rock art in Cova Eirós, located in the northwest of the Iberian Peninsula, whose walls display geometric / stylized animals with linear interior fills, widens the territory of Paleolithic rock art in North Iberia beyond the traditional Franco-Cantabrian core. This find is framed in the successive discoveries made in the last 20 years that break with the perception of the Franco-Cantabrian region as being the core of the Paleolithic art. Moreover, the formal and stylistic features of some motifs from Cova Eirós allow to ascribe them to the final stages of the Paleolithic-style portable and rock art, classified as Style V or fini-Paleolithic; a pan-European tradition that began ~ 12,000–11,500 BP and lasted up to ~9,500–9,000 BP, in correspondence with the last hunter-gatherer groups.Fieldwork and research at Cova Eirós were funded by the Spanish Ministerio de Ciencia (PID2019-107480 GB-I00) and the Consellería de Cultura e Turismo da Xunta de Galicia. The Institut Català de Paleoecologia Humana i Evolució Social (IPHES) has received financial support from the Spanish Ministry of Science and Innovation through the “María de Maeztu” program for Units of Excellence (CEX2019-000945-M)S

    Nuclear Scissors Mode with Pairing

    Full text link
    The coupled dynamics of the scissors mode and the isovector giant quadrupole resonance are studied using a generalized Wigner function moments method taking into account pair correlations. Equations of motion for angular momentum, quadrupole moment and other relevant collective variables are derived on the basis of the time dependent Hartree-Fock-Bogoliubov equations. Analytical expressions for energy centroids and transitions probabilities are found for the harmonic oscillator model with the quadrupole-quadrupole residual interaction and monopole pairing force. Deformation dependences of energies and B(M1)B(M1) values are correctly reproduced. The inclusion of pair correlations leads to a drastic improvement in the description of qualitative and quantitative characteristics of the scissors mode.Comment: 36 pages, 5 figures, the results of calculation by another method and the section concerning currents are adde

    Analysis of qPCR reference genes stability determination methods and a practical approach for efficiency calculation on a turbot (Scphthalmus maximus) gonad dataset

    Get PDF
    Gene expression analysis by reverse transcription quantitative PCR (qPCR) is the most widely used method for analyzing the expression of a moderate number of genes and also for the validation of microarray results. Several issues are crucial for a successful qPCR study, particularly the selection of internal reference genes for normalization and efficiency determination. There is no agreement on which method is the best to detect the most stable genes neither on how to perform efficiency determination. In this study we offer a comprehensive evaluation of the characteristics of reference gene selection methods and how to decide which one is more reliable when they show discordant outcomes. Also, we analyze the current efficiency calculation controversy. Our dataset is composed by gonad samples of turbot at different development times reared at different temperatures. Turbot (Scophthalmus maximus) is a relevant marine aquaculture European species with increasing production in the incoming years. Since females largely outgrow males, identification of genes related to sex determination, gonad development and reproductive behavior, and analysis of their expression profiles are of primary importance for turbot industryVersión del edito

    Garvey-Kelson Relations for Nuclear Charge Radii

    Get PDF
    The Garvey-Kelson relations (GKRs) are algebraic expressions originally developed to predict nuclear masses. In this letter we show that the GKRs provide a fruitful framework for the prediction of other physical observables that also display a slowly-varying dynamics. Based on this concept, we extend the GKRs to the study of nuclear charge radii. The GKRs are tested on 455 out of the approximately 800 nuclei whose charge radius is experimentally known. We find a rms deviation between the GK predictions and the experimental values of only 0.01 fm. This should be contrasted against some of the most successful microscopic models that yield rms deviations almost three times as large. Predictions - with reliable uncertainties - are provided for 116 nuclei whose charge radius is presently unknown.Comment: 4 pages and 3 figure
    corecore