63 research outputs found

    The effect of stimulation technique on sympathetic skin responses in healthy subjects

    Get PDF
    The aim of this study was to collect normative data for sympathetic skin responses (SSR) elicited by electrical stimulus of the ipsilateral and contralateral peripheral nerves, and by magnetic stimulus of cervical cord. SSRs were measured at the mid-palm of both hands following electrical stimulation of the left median nerve at the wrist and magnetic stimulation at the neck in 40 healthy adult volunteers (mean age 52.2 ± 12.2 years, 19 males). The onset latency, peak latency, amplitude and area were estimated in “P” type responses (i.e., waveforms with a larger positive, compared to negative, component). SSR onset and peak latency were prolonged when the electrical stimulus was applied at the contralateral side (i.e., the SSR recorded in the right palm P < 0.001). The onset latency was similar on both sides during cervical magnetic stimulation. However, peak latency was faster on the left side (P < 0.03). Comparison of electrical and magnetic stimulation revealed that both the onset and peak latency were shorter with magnetic stimulation (P < 0.001). The latency of a SSR varies depending on what type of stimulation is used and where the stimulus is applied. Electrically generated SSRs have a longer delay and the delay is prolonged at the contralateral side. These factors should be taken into account when interpreting SSR data

    Sporadic ALS is not associated with VAPB gene mutations in Southern Italy

    Get PDF
    Mutations in the Cu/Zn superoxide dismutase (Sod1) gene have been reported to cause adult-onset autosomal dominant Amyotrophic Lateral Sclerosis (FALS). In sporadic cases (SALS) de novo mutations in the Sod1 gene have occasionally been observed. The recent finding of a mutation in the VAMP/synaptobrevin-associated membrane protein B (VAPB) gene as the cause of amyotrophic lateral sclerosis (ALS8), prompted us to investigate the entire coding region of this gene in SALS patients. One hundred twenty-five unrelated patients with adult-onset ALS and 150 healthy sex-age-matched subjects with the same genetic background were analyzed. Genetic analysis for all exons of the VAPB gene by DHPLC revealed 5 variant profiles in 83 out of 125 SALS patients. Direct sequencing of these PCR products revealed 3 nucleotide substitutions. Two of these were found within intron 3 of the gene, harbouring 4 variant DHPLC profiles. The third nucleotide variation (Asp130Glu) was the only substitution present in the coding region of the VAPB gene, and it occurred within exon 4. It was found in three patients out of 125. The frequency of the detected exon variation in the VAPB gene was not significantly different between patients and controls. In conclusion, our study suggests that VAPB mutations are not a common cause of adult-onset SALS

    A Conditioning Lesion Provides Selective Protection in a Rat Model of Amyotrophic Lateral Sclerosis

    Get PDF
    Amyotrophic Lateral Sclerosis (ALS) is neurodegenerative disease characterized by muscle weakness and atrophy due to progressive motoneuron loss. The death of motoneuron is preceded by the failure of neuromuscular junctions (NMJs) and axonal retraction. Thus, to develop an effective ALS therapy you must simultaneously preserve motoneuron somas, motor axons and NMJs. A conditioning lesion has the potential to accomplish this since it has been shown to enhance neuronal survival and recovery from trauma in a variety of contexts. rats that received a conditioning lesion was delayed and less severe. These improvements in motor function corresponded to greater motoneuron survival, reduced motor axonopathy, and enhanced NMJ maintenance at disease end-stage. Furthermore, the increased NMJ maintenance was selective for muscle compartments innervated by the most resilient (slow) motoneuron subtypes, but was absent in muscle compartments innervated by the most vulnerable (fast fatigable) motoneuron subtypes.These findings support the development of strategies aimed at mimicking the conditioning lesion effect to treat ALS as well as underlined the importance of considering the heterogeneity of motoneuron sub-types when evaluating prospective ALS therapeutics

    Supportive and symptomatic management of amyotrophic lateral sclerosis

    Get PDF
    The main aims in the care of individuals with amyotrophic lateral sclerosis (ALS) are to minimize morbidity and maximize quality of life. Although no cure exists for ALS, supportive and symptomatic care provided by a specialist multidisciplinary team can improve survival. The basis for supportive management is shifting from expert consensus guidelines towards an evidence-based approach, which encourages the use of effective treatments and could reduce the risk of harm caused by ineffective or unsafe interventions. For example, respiratory support using noninvasive ventilation has been demonstrated to improve survival and quality of life, whereas evidence supporting other respiratory interventions is insufficient. Increasing evidence implicates a causal role for metabolic dysfunction in ALS, suggesting that optimizing nutrition could improve quality of life and survival. The high incidence of cognitive dysfunction and its impact on prognosis is increasingly recognized, although evidence for effective treatments is lacking. A variety of strategies are used to manage the other physical and psychological symptoms, the majority of which have yet to be thoroughly evaluated. The need for specialist palliative care throughout the disease is increasingly recognized. This Review describes the current approaches to symptomatic and supportive care in ALS and outlines the current guidance and evidence for these strategies

    Shared polygenic risk and causal inferences in amyotrophic lateral sclerosis

    Get PDF
    Objective To identify shared polygenic risk and causal associations in amyotrophic lateral sclerosis (ALS). Methods Linkage disequilibrium score regression and Mendelian randomization were applied in a large-scale, data-driven manner to explore genetic correlations and causal relationships between >700 phenotypic traits and ALS. Exposures consisted of publicly available genome-wide association studies (GWASes) summary statistics from MR Base and LD-hub. The outcome data came from the recently published ALS GWAS involving 20,806 cases and 59,804 controls. Multivariate analyses, genetic risk profiling, and Bayesian colocalization analyses were also performed. Results We have shown, by linkage disequilibrium score regression, that ALS shares polygenic risk genetic factors with a number of traits and conditions, including positive correlations with smoking status and moderate levels of physical activity, and negative correlations with higher cognitive performance, higher educational attainment, and light levels of physical activity. Using Mendelian randomization, we found evidence that hyperlipidemia is a causal risk factor for ALS and localized putative functional signals within loci of interest. Interpretation Here, we have developed a public resource () which we hope will become a valuable tool for the ALS community, and that will be expanded and updated as new data become available. Shared polygenic risk exists between ALS and educational attainment, physical activity, smoking, and tenseness/restlessness. We also found evidence that elevated low-desnity lipoprotein cholesterol is a causal risk factor for ALS. Future randomized controlled trials should be considered as a proof of causality. Ann Neurol 2019;85:470-481Peer reviewe

    Pathogenic Huntingtin Repeat Expansions in Patients with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis.

    Get PDF
    We examined the role of repeat expansions in the pathogenesis of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) by analyzing whole-genome sequence data from 2,442 FTD/ALS patients, 2,599 Lewy body dementia (LBD) patients, and 3,158 neurologically healthy subjects. Pathogenic expansions (range, 40-64 CAG repeats) in the huntingtin (HTT) gene were found in three (0.12%) patients diagnosed with pure FTD/ALS syndromes but were not present in the LBD or healthy cohorts. We replicated our findings in an independent collection of 3,674 FTD/ALS patients. Postmortem evaluations of two patients revealed the classical TDP-43 pathology of FTD/ALS, as well as huntingtin-positive, ubiquitin-positive aggregates in the frontal cortex. The neostriatal atrophy that pathologically defines Huntington's disease was absent in both cases. Our findings reveal an etiological relationship between HTT repeat expansions and FTD/ALS syndromes and indicate that genetic screening of FTD/ALS patients for HTT repeat expansions should be considered
    corecore