31 research outputs found

    HIVToolbox, an Integrated Web Application for Investigating HIV

    Get PDF
    Many bioinformatic databases and applications focus on a limited domain of knowledge federating links to information in other databases. This segregated data structure likely limits our ability to investigate and understand complex biological systems. To facilitate research, therefore, we have built HIVToolbox, which integrates much of the knowledge about HIV proteins and allows virologists and structural biologists to access sequence, structure, and functional relationships in an intuitive web application. HIV-1 integrase protein was used as a case study to show the utility of this application. We show how data integration facilitates identification of new questions and hypotheses much more rapid and convenient than current approaches using isolated repositories. Several new hypotheses for integrase were created as an example, and we experimentally confirmed a predicted CK2 phosphorylation site. Weblink: [http://hivtoolbox.bio-toolkit.com

    Protein function analysis: rapid, cell-based siRNA-mediated ablation of endogenous expression with simultaneous ectopic replacement

    No full text
    Current methods for determining and dissecting the function of a specific protein within a cell are laborious and limiting. We have developed a method by which endogenous protein levels are rapidly ablated and simultaneous expression of a designed, inserted variant takes place in the native setting. Through optimized electroporation, siRNA oligonucleotides and codon-optimized coding sequence containing vectors can be co-transfected, leading to expression of ectopic mRNA not targeted by siRNA. Using the commonly encountered MCF-7 breast cancer cell line, we were able to reach 90% transfection efficiency. Under these conditions, siRNA oligonucleotides were transfected simultaneously with a codon-optimized, cDNA containing vector encoding the AHR protein. Thus, endogenous protein was ablated while the designed protein was fully expressed in the native environment. The codon-optimized AHR was shown to be fully functional in its ability to induce CYP1A1 transcription and to rescue a B[a]P-susceptible phenotype

    Pushing it to the Limit: Adaptation with Dynamically Switching Gain Control

    Get PDF
    With this paper we propose a model to simulate the functional aspects of light adaptation in retinal photoreceptors. Our model, however, does not link specific stages to the detailed molecular processes which are thought to mediate adaptation in real photoreceptors. We rather model the photoreceptor as a self-adjusting integration device, which adds up properly amplified luminance signals. The integration process and the amplification obey a switching behavior that acts to shut down locally the integration process in dependence on the internal state of the receptor. The mathematical structure of our model is quite simple, and its computational complexity is quite low. We present results of computer simulations which demonstrate that our model adapts properly to at least four orders of input magnitude

    Mapping of bionic array electric field focusing in plasmid DNA-based gene electrotransfer

    No full text
    Molecular medicine through gene therapy is challenged to achieve targeted action. This is now possible utilizing bionic electrode arrays for focal delivery of naked (plasmid) DNA via gene electrotransfer. Here, we establish the properties of array-based electroporation affecting targeted gene delivery. An array with eight 300 μm platinum ring electrodes configured as a cochlear implant bionic interface was used to transduce HEK293 cell monolayers with a plasmid-DNA green fluorescent protein (GFP) reporter gene construct. Electroporation parameters were pulse intensity, number, duration, separation and electrode configuration. The latter determined the shape of the electric fields, which were mapped using a voltage probe. Electrode array-based electroporation was found to require ~100 × lower applied voltages for cell transduction than conventional electroporation. This was found to be due to compression of the field lines orthogonal to the array. A circular area of GFP-positive cells was created when the electrodes were ganged together as four adjacent anodes and four cathodes, whereas alternating electrode polarity created a linear area of GFP-positive cells. The refinement of gene delivery parameters was validated in vivo in the guinea pig cochlea. These findings have significant clinical ramifications, where spatiotemporal control of gene expression can be predicted by manipulation of the electric field via current steering at a cellular level
    corecore