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With this paper we propose a model to simulate the functional aspects of light adaptation in retinal photoreceptors. Our model,
however, does not link specific stages to the detailed molecular processes which are thought to mediate adaptation in real photore-
ceptors. We rather model the photoreceptor as a self-adjusting integration device, which adds up properly amplified luminance
signals. The integration process and the amplification obey a switching behavior that acts to shut down locally the integration
process in dependence on the internal state of the receptor. The mathematical structure of our model is quite simple, and its com-
putational complexity is quite low. We present results of computer simulations which demonstrate that our model adapts properly
to at least four orders of input magnitude.
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1. INTRODUCTION

There is agreement that adaptation (i.e., the adjustment of
sensitivity) is important for the function of nervous systems,
since without corresponding mechanisms, any neuron with
its limited dynamic range would stay silent or operate in sat-
uration most of the time [1]. Because neurons are noisy de-
vices, reliable information transmission is only granted if the
distribution of levels in the stimulus matches the neuron’s
reliable operation range [2].

Consider, for example, the mammalian visual system,
with the retina at its front end. When performing sac-
cades, the retina must cope with intensity variations which
may span about one [3, 4] to about two orders of mag-
nitude (2 including shadows according to [3], 2-3 accord-
ing to [5]). From one scene to another (e.g., from bright
sunlight to starlight), the range of intensity variations may
well span up to ten orders of magnitude [6–9]. This range
of intensities has to be mapped onto less than two orders
of output activity of retinal ganglion cells [10], implying
some form of compression of the scale of intensity val-
ues. The retina achieves this by making use of a cascade of
gain control and adaptation mechanisms, respectively (e.g.,
[11–14]). Specifically, cone photoreceptors may decrease
their sensitivity proportionally to background intensity, over

about 8 log units of background intensity [15]. This relation-
ship is known as Weber’s law (e.g., [16]). Adaptation in pho-
toreceptors is achieved by subtly balanced network of molec-
ular processes (see [17] for an excellent introduction, and
[14, 18] with references). Many of the data were gained from
rod photoreceptors because they are more amenable to anal-
ysis. It is generally believed, however, that similar processes
are also taking place in cones.

With the present paper, we propose a mechanism which
mimics the dark and light adaptations of retinal cones.
Our mechanism abstracts from the detailed molecular pro-
cesses of the transduction cascade as described in the fol-
lowing section. We seeked out an easy implementable and
computationally efficient way of achieving the adaptation be-
havior of cone photoreceptors. Our approach should—and
will be—contrasted with the retinal stage of a recently
proposed model of Grossberg and Hong [19, 20], which sim-
ulates (i) luminance adaptation at the outer segment of the
photoreceptor (cf. [21]), and (ii) inhibition at the inner seg-
ment of the photoreceptor by horizontal cells (e.g., [22]). In
their model, horizontal cells are coupled with gap junctions
(forming a syncytium), whose connectivity or permeability
decreases with increasing differences between the inputs of
adjacent cells [23, 24]. In other words, their horizontal cell
network establishes current flows inside of regions that are
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defined by low contrasts, whereas no activity exchange oc-
curs between regions which are separated by high contrast
boundaries (very similar to an anisotropic diffusion mech-
anism [25]). In this way, contrast adaption is implemented.
Notice that our model lacks the latter stage, and only simu-
lates the photoreceptor adaptation.

2. MECHANISMS OF ADAPTATION IN THE RETINA

A response to light is initiated by photoisomerization of
the chromophore 11-cis-retinal to all-trans-retinal. In dark-
ness, 11-cis-retinal is bound to rhodopsin in its inactive
conformation, and lies buried in the membranes of the
outer segment discs. Upon absorption of a photon, and
the subsequent photoisomerization of the chromophore, the
rhodopsin undergoes a conformational change which con-
verts it into its active form Rh∗ (or metarhodopsin II). The
presence of Rh∗ triggers two distinct mechanisms: a recy-
cling process known as visual cycle, and an enzymatic cas-
cade known as transduction cascade.

The visual cycle begins with the phosphorylation of Rh∗,
and subsequent binding of arrestin to the phosphorylated
photopigment. After, binding of arrestin, the photopigment
is rendered completely inactive. The protein opsin is then de-
phosphorylated, and all-trans-retinal is reduced to all-trans-
retinol. The retinol is isomerized to the 11-cis-isomer outside
the photoreceptor (in the adjacent retinal pigment epithe-
lium layer), and reenters afterwards to recombine with the
dephosphorylated opsin.

The transduction cascade begins with the serial activa-
tion of transducins by Rh∗, implementing the first stage for
signal amplification in the cascade [26]. Thereby, an active
complex Tα ·GTP is formed, which binds to and activates the
enzyme phosphodiesterase (PDE). PDE reduces the concen-
tration of cytoplasmatic cGMP by hydrolizing it. The latter
process constitutes a second stage for amplification. The hy-
drolysis of cGMP causes the closing of cGMP-gated channels,
what in turn generates the electrical response of photorecep-
tors. Thus, photoreceptors are depolarized in darkness be-
cause of their open cationic channels, and get hyperpolarized
by light. In darkness, the steady current that flows into the
outer segment is usually called dark or circulating current.1

The main fraction of the circulating current is carried by
Na+ ions, and a smaller fraction of Ca2+ ions [27]. Calcium
is transported out of the outer segment by the Na+/K+-Ca2+-
exchange protein at a constant rate, independent of the light
hitting the photoreceptor. This implies that light decreases
intracellular Ca2+ levels, because of the increased probability
of channel opening. As a consequence, a direct correlation
(i.e., a linear relationship) exists between the circulating cur-
rent and Ca2+ concentration.

Adaptation of the photoreceptor to ambient light is
granted by balancing the just described amplification mech-
anisms (for low light situations) against mechanisms which

1 The photocurrent is brought back to the dark-adapted level by hydrolizing
the GTP to GDP.

Table 1:Model overview: an overview over the mechanisms used in
the model of Grossberg and Hong [19, 20] and our approach.

Mechanism [19, 20] Our approach
Light adaptation Yes Yes
Local divisive gain control No Yes

prevent response saturation (e.g., for sunlit scenes). This bal-
ance is implemented by feedback mechanisms which act ei-
ther on the catalytic activity or on the catalytic lifetime of
the components thatmake up the phototransduction cascade
[28]. It is now well established that changes in Ca2+ concen-
tration regulate the cascade in at least three important ways.

First, Ca2+ can prolong the lifetime of Rh∗ through the
inhibition of phosphorylation in the visual cycle, by means
of recoverin. Second, in the transduction cascade, Ca2+ reg-
ulates the cytoplasmatic concentration of cGMP by bind-
ing to guanylate cyclase—the enzyme that is responsible for
cGMP synthesis. Third, decreasing Ca2+ concentrations in-
creases the sensitivity of the cationic channels to cGMP [29].

Taken together, Ca2+ is now considered as the photore-
ceptor’s internal messenger for adaptation. Supporting evi-
dence comes from the fact that adaptation effects can be pro-
voked without light (cf. [14, page 130]), by only lowering
the Ca2+ concentration, or that adaptation is suspended by
clamping the Ca2+ level to its value corresponding to dark-
ness (see [14, page 126]).

Beyond the level of the individual photoreceptor, fur-
ther mechanisms related to adaptation are effective, for ex-
ample network adaptation in interneurons and retinal gan-
glion cells (i.e., adaptation is “transferred” beyond the recep-
tive field of the actually stimulated cell, e.g., [30–33]), and
discounting predictable spatio-temporal structures from the
stimulus by Hebbian mechanisms [34, 35].

3. FORMAL DEFINITION OF THE ADAPTATION
DYNAMICS

Table 1 gives a brief comparison of components, and a sketch
of our model is shown in Figure 1. In what follows, we
give the formal introduction to our mechanisms which are
thought to provide an abstract view for adaptation as it takes
place in the outer segment of individual photoreceptors.

Let Li j be a two-dimensional luminance distribution
which provides the input into our model. For the purpose
of the present paper, we assume that the model converges
before changes in luminance occur, that is, ∂Li j(t)/∂t = 0,
where spatial coordinates are denoted by (i, j). We assume
that the input is normalized according to ε < L ≤ 1, with
ε is chosen such that 0 < ε < mini, j{Li j}. Let P denote the
membrane potential of the photoreceptor, which is assumed
to obey the equation (the symbols gleak, gexc(t), and Vexc are
defined below)

dP(t)
dt

= −gleakP(t) + gexc(t)
[
Vexc − P(t)

]
. (1)
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Figure 1: Model sketch: a luminance distribution is subjected to a
divisive “gain control” stage #1 (S(t), (3)). At this stage, inhibition
of luminance L takes place as a function of increasing photorecep-
tor potential P. The second gain control stage G(t) can either am-
plify the signal S(t) or attenuate it ((4), (5), and (6)). Amplification
of S(t) occurs if the membrane potential P falls below a threshold
Θ, and attenuation for P > Θ (see (5)). Both “gain control” stages
interact multiplicatively (denoted by the symbol “⊗,” (2)) before
providing excitatory input into the photoreceptor’s membrane po-
tential (symbol “P,” (1)). The photoreceptor potential in turn feeds
back into both of the “gain control” stages. At the same time, the
photoreceptor potential represents the output of our model.

Table 2: Simulation details: the table is self-explanatory. For the in-
tegration of (1), a fourth-order Runge-Kutta scheme was used with
an integration time step of 0.01. The remaining differential equa-
tions were integrated with Euler’s method with an integration time
step of one. Notice that the integration step sizes were not adjusted
to match physiological time scales.

Parameter Value Equation Description
gleak 0.05 (1) Leakage conductance
Vexc 1 (1) Synaptic battery
γ 1.5 (3) Divisive gain
τ1 0.7213 (5) Damping time constant
τ2 −40.4979 (5) Amplification time constant
Θ0 0.25 (6) Initial threshold value
τΘ 39.4949 (6) Threshold decay time constant

An instance of the last equation holds for each position (i, j),
hence P ≡ Pi j(t) (in what follows, indices were dropped for
brevity). The excitatory saturation point (or reversal poten-
tial) is defined by Vexc, and the leakage (or passive) conduc-
tance is defined by gleak (note that Vexc represents an asymp-
tote for P). Both of the last constants are equal for all pho-
toreceptor cells. The default simulation parameters, as well
as further simulation details, can be found in Table 2. No-
tice that photoreceptors in fact hyperpolarize in response to
light (cf. Section 2), whereas the last equation makes a con-
trary assumption. This assumption, however, implies no loss
of generality, since the model can equivalently be reformu-
lated such that it hyperpolarizes with increasing intensity
levels.

Luminance 256� 256 pixels

(a)

γ = 1.5 (default)

(b)

γ = 0 (no divisive gain)

(c)

Figure 2: Artifacts with a luminance ramp. (a) The input Li j , a
luminance step with a superimposed luminance ramp (increasing
linearly from left to the right). (b) With the default value γ = 1.5
in (3), the adaptated image is correctly rendered and hardly distin-
guishable from the input. (c) Setting γ = 0 causes the appearance
of ripple artifacts in the adaptated image. All results are shown at
t = 250 iterations.

Excitatory input to the photoreceptor potential is given
by the conductance gexc ≡ gexc,i j(t), which is defined by

gexc(t) = G(t) · S(t), (2)

where the process G ≡ Gij(t) interacts multiplicatively with
the light-induced signal S ≡ Si j(t) (such interaction was
previously referred to as mass action or gating mechanism,
see [21]). For the signal S, we assume that its efficiency for
driving the photoreceptor’s potential diminishes with in-
creasing potential P:

S(t) = L

1 + γ · P(t) . (3)

The last equation in fact establishes a feedback mechanism
which allows the photoreceptor to regulate the strength of its
own excitatory input. In addition, the excitatory drive of the
photoreceptor is also a decreasing function of increasing po-
tential P(t) by virtue of the term “(Vexc − P)” (the driving
potential) in (1). Notice that if gexc was constant and suffi-
ciently high, the driving potential would make P(t) saturate
at Vexc (i.e., Vexc is asymptotically approached). Therefore,
both the excitatory input gexc and the driving potential de-
crease as P(t) grows. The motivation for including (3) in our
model was to eliminate ripple artifacts seen with luminance
ramps (Figure 2). With “normal” natural images, those arti-
facts did not appear to be a major nuisance (Figure 3, see also
Section 4).
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G(t) = 1 (constant)

(a)

γ = 0 (no divisive gain)

(b)

Θ(t) = Θ0 (constant)

(c)

Figure 3: Artifacts: the results shown in this figure should be com-
pared with Figure 7. (a) Setting the amplification constant toG(t) =
1 in (2) diminishes adaptation (i.e., low luminance values are not
pushed that high). Notice that in this case dynamical switching is
made inoperative. (b) Setting γ = 0 in (3) has no effect on the nat-
ural images we have tested, but causes strong ripple artifacts with
luminance ramps as demonstrated in Figure 2. (c) Using a constant
threshold Θ(t) = Θ0 = 0.25 in (5) leads to strong saturation (or
over-adaptation). All results are shown at t = 250 iterations.

The process G(t) implements an amplification mecha-
nism as follows:

τk
dG(t)
dt

= −G, (4)

where the initial condition G(t = t0) = 1 was used. Simu-
lations are assumed to start at t0 = 0. By virtue of the in-
dex k ∈ {1, 2} associated with the time constant τk , the last
equation describes two distinct processes. These processes are
characterized by τ1 > 0 (making G decay with time), and
τ2 < 0 (leading to an increase of G with time). The last
equation thus implements what we dubbed a “dynamically
switching gain control.” But who or what is switching G on
(i.e., making it increase with |τ2|) or off (i.e., making it de-
crease with τ1)? The one or the other process is invoked de-
pending on whether P exceeds a threshold Θ or not:

k = 1 if P(t) > Θ(t),

k = 2 otherwise.
(5)

This means that if the outer segment potential P is below the
threshold Θ, its input gexc(t) is amplified via (3). The ampli-
fication mechanism acts to diminish the integration time of
luminance signals until reaching the threshold Θ, especially
low-intensity signals. Once the threshold is exceeded, ampli-
fication is switched off (Figure 5). In fact, G decays rapidly

then in order to avoid driving the outer segment potential
into saturation (which nevertheless may occur at sufficiently
high intensity values). With ineffective dynamical switching
G ≡ const adaptation is severely deteriorated (Figure 3(a)).
Mathematically, the dynamic switching mechanism avoids
an unbounded growth of G.

Amplification proceeds until P crosses a threshold. The
threshold, however, is not fixed, but is rather represented by
a slowly decaying process on its own:

τΘ
dΘ(t)
dt

= −Θ(t). (6)

We used the initial condition Θ(t = t0) = Θ0, and like to
point out that the threshold Θ is not supposed to represent
a firing threshold for the photoreceptor. It rather serves to
implement the dynamic switching behavior for turning the
signal amplification on or off. The motivation for includ-
ing a dynamical threshold in our model was the elimina-
tion of artifactual contrasts inversion effects, and will be ex-
plained in more details in Section 4. Furthermore, if a con-
stant threshold was chosen, over-adaptation would occur
(Figure 3(c)).

Our simulations were evaluated at the moment when
Pi j > Θi j for all (i, j). This is, however, not a steady state,
because the outer segment potential continues to decay with
gleak. The results which are presented in Figures 8 to 10 there-
fore show snapshots of the outer segment potential at exactly
the moment when the last potential value Pi j(t) exceeded the
threshold Θ(t) (i.e., (i, j) corresponds to the position with
the lowest intensity value in the input).

One may ask why we gave preference to a dynamical for-
mulation of our model over steady state equations. Intu-
itively, steady state solutions cannot capture the full behavior
revealed by the model. For example, the steady state solution
(as defined by dΘ/dt = 0) of the last equation is zero, and,
depending on k, the steady state solution of (4) is infinity
(k = 2) or zero (k = 1).

4. DESCRIPTION OF THE ADAPTATION DYNAMICS

What does the adaptation dynamics defined by (1) to (6)
look like? The process obviously integrates the activity gen-
erated by an input image L, via the photoreceptor mem-
brane potential P. The integration proceeds until P exceeds
the threshold Θ. At this point, the integration process de-
celerates exponentially with a time constant τ1 > 0, since
the corresponding solution to (4) is Θ(t) = exp(−t/τ1). The
dynamics of P is shown in Figure 4: luminance values that
vary over 5 orders of magnitude are mapped onto roughly
two orders of output magnitude in a way that contrast re-
lationships of the input are preserved. Moreover, the pro-
cess converges rather fast. Even for the smallest input inten-
sities, convergence is reached at about 200 iterations. This
fastness is a consequence of the dynamic switching process,
which increases signal amplificationG until P exceedsΘ (do-
ing so reduces the integration time especially for weak lumi-
nance signals). Since this process (4) per se would grow in
an unbounded fashion, one may question its physiological
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0 �1 �2 �3 �4 �5

0.5

1

1.5

2

2.5

0

0.03

0.06

0.1

0.13

log10 intensity

T
im

e
(t
)

Potential P(t)

Increase in
integration
time

M
in
im

u
m

in
te
gr
at
io
n

ti
m
e

Figure 4: Photoreceptor potential: the photoreceptor potential P (1)
is plotted as a function of time (t = 0 to 250 iterations) and in-
put intensity (L ∈ {100, 10−1, . . . , 10−5}. The photoreceptor am-
plitude is color-coded (colorbar). “Convergence” occurs when the
photoreceptor potential P exceeds a threshold Θ, and corresponds
to the area over the diagonal line. The minimum integration time
is delinated by the horizontal line at the bottom. With decreasing
luminance, one observes an increase in integration time until “con-
vergence” is reached (as illustrated by the red arrows pointing to
the plateau). A similar increase in integration time with decreasing
stimulus intensity levels is also known from the retina, and is ex-
pressed as Bloch’s law of temporal integration. Bloch’s law relates
the threshold for seeing a stimulus to stimulus duration (i.e., inte-
gration time) and stimulus intensity: the product of stimulus dura-
tion and stimulus intensity equals a constant within a so-called crit-
ical time window. Bloch’s law is especially prominent for scotopic
vision.

plausibility. But as long as ε > 0, or dynamically varying
noise is present in the model, eventually all luminance val-
ues reach threshold in finite time, and as a consequence, G
(4) switches from amplification to attenuation. This is to say
that for k = 2, the process G is bounded mathematically
from above. Furthermore, numerical experiments demon-
strate that G does not adopt excessively high values (see
Figure 5).2

Nevertheless, a suitably parameterized and asymptot-
ically bounded process for substituting G, rather than a
sharply cut exponential (as it is implemented by (4), (5), and
(6)), would perhaps better reflect physiological reality—but
for the moment we set aside plausible functions to keep the
model concise.

Why should the threshold Θ drop with time? Imagine
that we fix Θ to some constant value. In that case, all lu-
minance values are integrated until they all reach the same
threshold. This means that the integration process would es-
tablish a common level for bright and dark luminance values,
what in the best of all cases would lead to a strong reduction
of contrasts with respect to the input (Figure 3(c)). But there
is yet another, more technical point, to this.

2 If P(t) ≤ Θ(t), the subthreshold gain obeys G(t) = exp(t/|τ2|). Assuming
t = 250 iterations and using |τ2| = 40.5 (see Table 2) we getG(t = 250) ≈
479.55 as maximum amplification.
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Figure 5: Dynamics of the “switching” gain control: the same as in
Figure 4, but here the dynamics of the signal amplification variable
G(t,L) (4) is visualized. The bright (dark) area on the bottom (top)
indicates where the gain control is switched on (off). Notice that the
switching occurs rather fast around the red area. The switching area
resembles a blurred line—compare it to the diagonal line delineat-
ing the convergence plateau in Figure 4.

Consider a pair of luminance values, one brighter than
the other. Since the integration process proceeds with fixed
time steps (and exponentially increasing gain), we may
choose both luminance values such that they exceed the fixed
threshold in a way that the previously dark luminance value
leaves more super-threshold activity than the bright value
(the brighter value must have exceeded threshold at some
former time step, and thus its activity P already has decayed
somewhat due to the passive leakage conductance gleak in
(1)). In other words, when decoding the photoreceptor po-
tential P, the dark value would suddenly appear brighter than
the original bright value. Such “contrast inversion” artifacts
are avoided with a threshold that decreases with time. Thus,
the dynamic threshold process (6) acts to preserve contrast
polarities (notice that the threshold process asymptotically
approaches zero).

Yet another type of artifact may emerge as a consequence
of the exponentially increasing amplification signal G, most
likely due to amplification of numerical noise while inte-
grating the differential equations. With certain luminance
distributions, especially with luminance ramps, step-like or
ripple-like structures may appear when P is read out (of
course the ripples are absent from the input, cf. Figure 2).
Those artifacts are counteracted by the additional gain con-
trol mechanism (3). Its net effect is to continuously decrease
the integration step size for (1) as the potential P grows. This
effect gets especially prominent for high luminance values
(see Figure 6).

5. RESULTS OF NUMERICAL EXPERIMENTS

What should one expect from a “good” adaptation mech-
anism? It should map luminance values, which can be dis-
tributed over several orders of magnitude, onto a fixed target
range of, say, one or two orders of magnitude. In this way,
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Figure 6: Input signal: the same as in Figure 4, but here the dynam-
ics of the input signal S(t,L) is visualized (3).

images with a high dynamic range could be visualized with
a normal computer monitor. If we tried a direct visualiza-
tion of a high dynamic range image without applying any
adaptation, we could just see the luminance patterns of the
first one or two orders of magnitude, while all smaller lumi-
nance values would be displayed in black (see Figure 7; notice
that the optic nerve has a similar transmission bandwidth).
Additionally, a “good” adaptation mechanism should leave
an input image unchanged which does only vary over one
or two orders of magnitude. Or at least leave such an image
unchanged as far as possible. Contrast strength should ide-
ally be preserved. Put another way, compression effects that
are introduced by the adaptation mechanism should be min-
imized.

We compare the results of our mechanism with one pro-
posed in [19, 20] (subsequently denoted by “Grossberg and
Hong”).3

In order to assure that, at some time, P(t)i j > Θ(t) at
all positions (i, j), zero values of the original luminance dis-
tribution were substituted by the half of the second smallest
luminance value, that is, ε = 0.5 ∗ min{Li j : Li j > 0}, if
not otherwise stated. We used standard benchmark images
of size 256× 256 pixels as inputsL.

Figure 8 shows the results with the MIT image, where
the result obtained with our method is slightly less saturated
than the one obtained with Grossberg and Hong’s method.

In order to better explore the performance of the two
methods, we superimposed the original test images with arti-
ficially generated illumination patterns. In Figure 9, the MIT
image was multiplied with a luminance ramp to simulate
an illumination gradient. In the latter case, the result from
Grossberg and Hong is less saturated than ours.

In Figure 7, the original image (shown in Figure 11) was
subdivided in four “tiles,” where within each tile luminance
values vary over a different order of magnitude. This test

3 We implemented [20, equations (A3) to (A8)], and integrated their model
over 500 iterations with Euler’s method, where a integration step size of
0.01 was used.

Luminance 256� 256 pixels

O(10�2) O(10�3)

(a)

Grossberg and Hong

(b)

Our approach

(c)

Figure 7: Tiled Lena image: the original Lena image (with lumi-
nance values between 0 and 1, see Figure 11) was subdivided into
four tiles, and tiles were multiplied with 100, 10−1, 10−2, and 10−3,
respectively. In the input (a), both of the lower tiles are displayed
in black. The order of magnitude of the corresponding luminance
range is indicated with the black tiles.

Luminance 256� 256 pixels

(a)

Grossberg and Hong

(b)

Our approach

(c)

Figure 8: MIT image: (a) shows the input image, with luminance
values originally varying from 0 to 255. The input image was nor-
malized such that the maximum intensity value was 1, and the min-
imum 0. Subsequently, all zero luminance values were substituted
by ε = (1/255)/2. (b) shows the result obtained with the method
described in [19, 20] (500 iterations). (c) was obtained with our
approach (150 iterations; convergence occurred within simulation
time). Both (b) and (c) show the cone’s membrane potential.



M. S. Keil and J. Vitrià 7

Luminance 256� 256 pixels

(a)

Grossberg and Hong

(b)

Our approach

(c)

Figure 9: MIT image with overlying luminance ramp: the origi-
nal MIT image (see Figure 8) was multiplied with a luminance
ramp which linearly increases from left (intensity 0) to the right
(intensity 1).

image mimics a situation where the range of luminance val-
ues within a scene varies over four orders of magnitude. Both
methods push luminance values sufficiently high such that
details in the darkest tile are rendered visible (where our
method yields an overall more brighter result—and hence
the darkest patch is better visible). Thus, four orders of mag-
nitude of input range are mapped onto two orders of magni-
tude available for visualization, a situation that is similar to
situations which are met by the retina.

In the last example, we created an artificial high dynamic
range image (Figure 10) from the original “Peppers” im-
age (Figure 11). In this case, our method produces a slightly
brighter result compared with Grossberg and Hong: the re-
sult generated with Grossberg andHong’s method has harder
contrasts.

We conducted further simulations where we setLi j ← Pi j
after convergence, and restarted the simulation. The results
did not change, indicating that the model’s state after con-
verging the first time already corresponds to a steady state
solution.

6. MODEL BEHAVIORWITH PARAMETER CHANGES

The parameters of our model can be tuned according to the
expected numerical range of luminance values. In this way,
compression effects in the output are reduced, which can lead
to the generation of visually more pleasing results.

Increasing the value of γ (Table 2; (3)) reduces the overall
compression of the input at the cost of low-intensity regions.
This is to say that low-intensity regions will appear darker,
and regions with higher intensities will be rendered with

Luminance 256� 256 pixels

(a)

Grossberg and Hong

(b)

Our approach

(c)

Figure 10: Power-law-stretched Peppers image: luminance values of
the original Peppers image (see Figure 11) were raised to the power
of 4 to create a high dynamic range image.

(a) (b)

Figure 11: Original “Lena” and “Peppers” image: these images are
shown for comparing them with the results presented in Figures 7
and 10, respectively.

somewhat improved contrasts. A similar effect results, albeit
more intense, when increasing the threshold decay time con-
stant τΘ (6). Decreasing the initial threshold valueΘ0 (6) will
slightly increase overall brightness and compression, respec-
tively. The model behavior is quite robust against changes
in the damping time constant τ1, since this mechanism is
backed up by the signal gain control stage (3). Nevertheless,
variations in the value of the amplification time constant τ2
bear strongly on the results: a decrease improves greatly the
adaptation behavior, but if τ2 is set too low artifacts may oc-
cur, such as contrast polarities being reversed with respect to
the input. On the other hand, if τ2 → ∞, no adaptation at
all takes place. In future versions of our approach, this in-
fluential parameter could be set automatically as a spatially
varying function of the structures in the input image.
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7. THIS THING CALLED “EPSILON”

As it turned out, a “smart” choice of ε can even improve the
contrasts in the visualization of the results. Because for dis-
playing, each image is normalized to occupy the full range of
available gray levels, if ε is too small with respect to the sec-
ond smallest luminance value, it gets not sufficiently pushed
by the adaptation process, such that in the adapted image
the difference between the smallest and the second small-
est value is too big. As a consequence, many of the darker
gray levels are not used (if we assume a linear mapping of
activity to gray levels), what leaves less gray levels for dis-
playing the other (higher) luminance values. Hence, the con-
trasts in the displayed image will be reduced. Ideally, ε should
depend in some way on how dark the input image is per-
ceived by a human observer. Finding an adequate function
that automatically sets the value of ε would be an interesting
topic for future research.

8. DISCUSSION AND CONCLUSIONS

We presented a novel theory about the adaptational mecha-
nisms in retinal photoreceptors. Our theory is abstract in the
sense that we did not attempt to identify model stages with
components of the phototransduction cascade (as outlined
in Section 2). Nevertheless, one is tempted to draw cor-
responding parallels between our model and physiological
data. In the transduction cascade, there are (at least) two
sites of amplification: the serial activation of transducins by
the active form of rhodopsin Rh∗, and the hydrolysis of
cGMP by phosphodiesterase. An amplification of the sig-
nal takes also place in our model by virtue of G in (4).
Furthermore, Ca2+ constitutes a messenger for adaptation.
In contrast, there is no corresponding variable for describ-
ing the concentration of Ca2+ in our model. Nevertheless,
the membrane potential P subserves two different purposes.
First, it corresponds to the output of the photoreceptor. Sec-
ond, it constitutes a feedback signal that acts to control signal
amplification—and hence the adaptation process. As Ca2+ is
known to be linearly related to the membrane potential, it
seems reasonable to consider P as a lumped-together descrip-
tion for both the membrane potential and the Ca2+ concen-
tration.

Indeed, one can draw further parallels. In our model, sig-
nal amplification stops as soon as the membrane potential
exceeds a threshold, in order to counteract saturation effects
(5). This process is reminiscent on the binding of arrestin to
phosphorylated Rh∗, leading to a complete inactivation of
the photopigment, and thus to a ceasing of the transduction
cascade.

In our model, there is yet another way to counteract sat-
uration effects, by means of the divisive inhibition stage (3).
This process can be compared to the interaction of Ca2+ with
the visual cycle, which causes an acceleration of the rate of
Rh∗ phosphorylation [36–38]. This interaction is brought
about by the Ca2+-binding protein recoverin, and decreases
the lifetime of Rh∗. As a consequence, less cGMP will be hy-
drolyzed upon absorption of a photon [26].

On the technical side, computer simulations demon-
strated that our approach is on a par with a recently proposed
model by Grossberg and Hong [19, 20] “(G&H).” However,
several crucial differences exist between their approach and
ours.

First and above all, the critical stage for adaptation in
Grossberg and Hong’s approach consists of the feedback pro-
vided by electrically coupled horizontal cells. Light adapta-
tion through the outer segment can be decoupled from the
actual adaptation dynamics, and hence may be considered as
a preprocessing step in their model.

Remarkably, our approach achieves similar adaptation
results without incorporating the horizontal-to-cone feed-
back loop. This prediction is consistent with physiological
data, as cone photoreceptors can decrease their sensitivity
over about 8 log units of background intensity [15]. More-
over, feedback from horizontal cells may even further im-
prove adaptation. Since we have seen, on the other hand, that
contrasts are reduced as a consequence of the dynamic range
compression, one may speculate that feedback from hori-
zontal may also compensate for this effect, by reenhancing
contrasts. Notice that contrast enhancement is tantamount
to center-surround interactions. Because adjacent horizon-
tal cells of the same type are fused by gap junctions, their
feedback will influence the membrane potential of neigh-
boring cones within some radius of the actually stimulated
photoreceptor. In this way, the antagonistic receptive field
structure is created in bipolar cells. But then bipolar cells
represent a contrast-enhanced signal of the photoreceptors.
Therefore, neurophysiological data are consistent with our
ideas.

Both models have similar complex with respect to pa-
rameter spaces. Grossberg and Hong’s approach has some 10
parameters, whereas ours has 7 (plus the ε). Although we did
not carry out a detailed analysis of computational complex-
ity, the respective model structures suggest that the Gross-
berg and Hong model is computationally more demanding.
The latter fact seemed to be confirmed with our simulations
on a serial computer, where our model converged in a frac-
tion of the time that was necessary to achieve comparable
results with the Grossberg and Hong model.4

Similar to the Grossberg and Hong model, another
approach [39] is also motivated by the observation that
strong contrasts usually indicate reflectance changes in nat-
ural scenes, as opposed to intensity variantions due to
changes in illumination. The approach in [39], however, has
no stage for luminance adaptation, and only computes an
“anisotropically like” smoothed version of the image, which
is used for exerting divisive gain control directly on inten-
sity values (cf. Table 1). The lateral connectivity between cells
that form the diffusion layer is controlled by inverse We-
ber contrasts. Hence, both strong and weak contrasts in the
original image may affect the degree of smoothing. Simula-
tion results obtained with our implementation of Gross’ and

4 In our implementation of the Grossberg and Hong model we used the
steady state equations where possible, and also the long-range diffusion
mechanism is as proposed by the authors.
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Brajovic’s approach revealed strong boundary enhancement
if tuned such that the adaptation was comparable to the other
twomethods. This suggests that the signal transduction char-
acteristics of Gross’ and Brajovic’s approach are high-pass.

Our model, perhaps with different parameter values,
should as well be useful for displaying high dynamic range
images, or synthetic aperture radar images. This is a topic
that will be pursued with future research. Further interesting
questions address the incorporation of feedback from hori-
zontal cells, and possibly of reset mechanisms for the thresh-
old process, in order to extend our model’s processing capac-
ities to image sequences.
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