37 research outputs found

    Mixing of Active and Sterile Neutrinos

    Full text link
    We investigate mixing of neutrinos in the ν\nuMSM (neutrino Minimal Standard Model), which is the MSM extended by three right-handed neutrinos. Especially, we study elements of the mixing matrix ΘαI\Theta_{\alpha I} between three left-handed neutrinos να\nu_\alpha (α=e,μ,τ\alpha = e,\mu,\tau) and two sterile neutrinos NIN_I (I=2,3I=2,3) which are responsible to the seesaw mechanism generating the suppressed masses of active neutrinos as well as the generation of the baryon asymmetry of the universe (BAU). It is shown that ΘeI\Theta_{eI} can be suppressed by many orders of magnitude compared with ΘμI\Theta_{\mu I} and ΘτI\Theta_{\tau I}, when the Chooz angle θ13\theta_{13} is large in the normal hierarchy of active neutrino masses. We then discuss the neutrinoless double beta decay in this framework by taking into account the contributions not only from active neutrinos but also from all the three sterile neutrinos. It is shown that N2N_2 and N3N_3 give substantial, destructive contributions when their masses are smaller than a few 100 MeV, and as a results ΘeI\Theta_{e I} receive no stringent constraint from the current bounds on such decay. Finally, we discuss the impacts of the obtained results on the direct searches of N2,3N_{2,3} in meson decays for the case when N2,3N_{2,3} are lighter than pion mass. We show that there exists the allowed region for N2,3N_{2,3} with such small masses in the normal hierarchy case even if the current bound on the lifetimes of N2,3N_{2,3} from the big bang nucleosynthesis is imposed. It is also pointed out that the direct search by using π+e++N2,3\pi^+ \to e^+ + N_{2,3} and K+e++N2,3K^+ \to e^+ + N_{2,3} might miss such N2,3N_{2,3} since the branching ratios can be extremely small due to the cancellation in ΘeI\Theta_{eI}, but the search by K+μ++N2,3K^+ \to \mu^+ + N_{2,3} can cover the whole allowed region by improving the measurement of the branching ratio by a factor of 5.Comment: 30 pages, 32 figure

    The mu problem and sneutrino inflation

    Get PDF
    We consider sneutrino inflation and post-inflation cosmology in the singlet extension of the MSSM with approximate Peccei-Quinn(PQ) symmetry, assuming that supersymmetry breaking is mediated by gauge interaction. The PQ symmetry is broken by the intermediate-scale VEVs of two flaton fields, which are determined by the interplay between radiative flaton soft masses and higher order terms. Then, from the flaton VEVs, we obtain the correct mu term and the right-handed(RH) neutrino masses for see-saw mechanism. We show that the RH sneutrino with non-minimal gravity coupling drives inflation, thanks to the same flaton coupling giving rise to the RH neutrino mass. After inflation, extra vector-like states, that are responsible for the radiative breaking of the PQ symmetry, results in thermal inflation with the flaton field, solving the gravitino problem caused by high reheating temperature. Our model predicts the spectral index to be n_s\simeq 0.96 due to the additional efoldings from thermal inflation. We show that a right dark matter abundance comes from the gravitino of 100 keV mass and a successful baryogenesis is possible via Affleck-Dine leptogenesis.Comment: 27 pages, no figures, To appear in JHE

    Designed Azolopyridinium Salts Block Protective Antigen Pores In Vitro and Protect Cells from Anthrax Toxin

    Get PDF
    Background:Several intracellular acting bacterial protein toxins of the AB-type, which are known to enter cells by endocytosis, are shown to produce channels. This holds true for protective antigen (PA), the binding component of the tripartite anthrax-toxin of Bacillus anthracis. Evidence has been presented that translocation of the enzymatic components of anthrax-toxin across the endosomal membrane of target cells and channel formation by the heptameric/octameric PA63 binding/translocation component are related phenomena. Chloroquine and some 4-aminoquinolones, known as potent drugs against Plasmodium falciparium infection of humans, block efficiently the PA63-channel in a dose dependent way.Methodology/Principal Findings:Here we demonstrate that related positively charged heterocyclic azolopyridinium salts block the PA63-channel in the μM range, when both, inhibitor and PA63 are added to the same side of the membrane, the cis-side, which corresponds to the lumen of acidified endosomal vesicles of target cells. Noise-analysis allowed the study of the kinetics of the plug formation by the heterocycles. In vivo experiments using J774A.1 macrophages demonstrated that the inhibitors of PA63-channel function also efficiently block intoxication of the cells by the combination lethal factor and PA63 in the same concentration range as they block the channels in vitro.Conclusions/Significance:These results strongly argue in favor of a transport of lethal factor through the PA63-channel and suggest that the heterocycles used in this study could represent attractive candidates for development of novel therapeutic strategies against anthrax. © 2013 Beitzinger et al

    StopCOVID cohort : An observational study of 3,480 patients admitted to the Sechenov University hospital network in Moscow city for suspected COVID-19 infection

    Get PDF
    © 2020 Oxford University Press. This is a pre-copyedited, author-produced PDF of an article accepted for publication in Clinical Infectious Diseases following peer review. The version of record is available online at: https://doi.org/10.1093/cid/ciaa1535.BACKGROUND: The epidemiology, clinical course, and outcomes of COVID-19 patients in the Russian population are unknown. Information on the differences between laboratory-confirmed and clinically-diagnosed COVID-19 in real-life settings is lacking. METHODS: We extracted data from the medical records of adult patients who were consecutively admitted for suspected COVID-19 infection in Moscow, between April 8 and May 28, 2020. RESULTS: Of the 4261 patients hospitalised for suspected COVID-19, outcomes were available for 3480 patients (median age 56 years (interquartile range 45-66). The commonest comorbidities were hypertension, obesity, chronic cardiac disease and diabetes. Half of the patients (n=1728) had a positive RT-PCR while 1748 were negative on RT-PCR but had clinical symptoms and characteristic CT signs suggestive of COVID-19 infection.No significant differences in frequency of symptoms, laboratory test results and risk factors for in-hospital mortality were found between those exclusively clinically diagnosed or with positive SARS-CoV-2 RT-PCR.In a multivariable logistic regression model the following were associated with in-hospital mortality; older age (per 1 year increase) odds ratio [OR] 1.05 (95% confidence interval (CI) 1.03 - 1.06); male sex (OR 1.71, 1.24 - 2.37); chronic kidney disease (OR 2.99, 1.89 - 4.64); diabetes (OR 2.1, 1.46 - 2.99); chronic cardiac disease (OR 1.78, 1.24 - 2.57) and dementia (OR 2.73, 1.34 - 5.47). CONCLUSIONS: Age, male sex, and chronic comorbidities were risk factors for in-hospital mortality. The combination of clinical features were sufficient to diagnoseCOVID-19 infection indicating that laboratory testing is not critical in real-life clinical practice.Peer reviewe

    Tailored ß-Cyclodextrin Blocks the Translocation Pores of Binary Exotoxins from C. Botulinum and C. Perfringens and Protects Cells from Intoxication

    Get PDF
    International audienceBackgroundClostridium botulinum C2 toxin and Clostridium perfringens iota toxin are binary exotoxins, which ADP-ribosylate actin in the cytosol of mammalian cells and thereby destroy the cytoskeleton. C2 and iota toxin consists of two individual proteins, an enzymatic active (A-) component and a separate receptor binding and translocation (B-) component. The latter forms a complex with the A-component on the surface of target cells and after receptor-mediated endocytosis, it mediates the translocation of the A-component from acidified endosomal vesicles into the cytosol. To this end, the B-components form heptameric pores in endosomal membranes, which serve as translocation channels for the A-components.Here we demonstrate that a 7-fold symmetrical positively charged ß-cyclodextrin derivative, per-6-S-(3-aminomethyl)benzylthio-ß-cyclodextrin, protects cultured cells from intoxication with C2 and iota toxins in a concentration-dependent manner starting at low micromolar concentrations. We discovered that the compound inhibited the pH-dependent membrane translocation of the A-components of both toxins in intact cells. Consistently, the compound strongly blocked transmembrane channels formed by the B-components of C2 and iota toxin in planar lipid bilayers in vitro. With C2 toxin, we consecutively ruled out all other possible inhibitory mechanisms showing that the compound did not interfere with the binding of the toxin to the cells or with the enzyme activity of the A-component.Conclusions/SignificanceThe described ß-cyclodextrin derivative was previously identified as one of the most potent inhibitors of the binary lethal toxin of Bacillus anthracis both in vitro and in vivo, implying that it might represent a broad-spectrum inhibitor of binary pore-forming exotoxins from pathogenic bacteria

    Higgs field in cosmology

    Full text link
    The accelerated expansion of the early universe is an integral part of modern cosmology and dynamically realized by the mechanism of inflation. The simplest theoretical description of the inflationary paradigm is based on the assumption of an additional propagating scalar degree of freedom which drives inflation - the inflaton. In most models of inflation the fundamental nature of the inflaton remains unexplained. In the model of Higgs inflation, the inflaton is identified with the Standard Model Higgs boson and connects cosmology with elementary particle physics. A characteristic feature of this model is a non-minimal coupling of the Higgs boson to gravity. I review and discuss several phenomenological and fundamental aspects of this model, including the impact of quantum corrections and the renormalization group, the derivation of initial conditions for Higgs inflation in a quantum cosmological framework and the classical and quantum equivalence of different field parametrizations.Comment: 36 pages, 9 figures; references added, typos corrected. Invited contribution to the Heraeus-Seminar "Hundred Years of Gauge Theory", 30 July - 3 August 2018, Physikzentrum Bad Honnef, organized by Silvia De Bianchi and Claus Kiefer. To appear in the proceedings "100 Years of Gauge Theory. Past, present and future perspectives" in the series `Fundamental Theories of Physics' (Springer

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
    corecore