34 research outputs found
An ultrasound-assisted photocatalytic treatment to remove an herbicidal pollutant from wastewaters
Pollutants of emerging concern contaminate surface and ground water. Advanced oxidation processes treat these molecules and degrade them into smaller compounds or mineralization products. However, little information on coupled advanced oxidation techniques and on the degradation pathways of these pollutants is available to identify possible ecotoxic subproducts. In the present work, we investigate the ultrasound assisted photocatalytic degradation pathway of the herbicide Isoproturon. We worked in batch mode in a thermostatic glass reactor. We compared the activity of nanometric TiO2 P25 with that of Kronos 1077, a micrometric TiO2. We discuss the individual, additive and synergistic degradation action of photolysis, sonolysis, sonophotolysis, and sonophotocatalysis by varying catalyst loading and/or ultrasound power for the last three techniques. With 0.1 g L 121 catalyst, photocatalysis and sonophotopcatalysis completely degrade Isoproturon within 240 min and 60 min, respectively (>99% conversion). Sonophotocatalysis breaks Isoproturon down into smaller molecules than photocatalysis alone
Multi-year interlaboratory exercises for the analysis of illicit drugs and metabolites in wastewater:development of a quality control system
Thirty-seven laboratories from 25 countries present the development of an inter-laboratory testing scheme for the analysis of seven illicit drug residues in standard solutions, tap- and wastewater. Almost 10 000 concentration values were evaluated: triplicates of up to five samples and 26 laboratories per year. The setup was substantially improved with experiences gained across the six repetitions (e.g. matrix type, sample conditions, spiking levels). From this, (pre-)analytical issues (e.g. pH adjustment, filtration) were revealed for specific analytes which resulted in formulation of best-practice protocols for inter-laboratory setup and analytical procedures. The results illustrate the effectiveness of the inter-laboratory setup to assess laboratory performance in the framework of wastewater-based epidemiology. The exercise proved that measurements of laboratories were of high quality (>80% satisfactory results for six out of seven analytes) and that analytical follow-up is important to assist laboratories in improving robustness of wastewater-based epidemiology results
Comparative measurement and quantitative risk assessment of alcohol consumption through wastewater-based epidemiology: An international study in 20 cities
Quantitative measurement of drug consumption biomarkers in wastewater can provide objective information on community drug use patterns and trends. This study presents the measurement of alcohol consumption in 20 cities across 11 countries through the use of wastewater-based epidemiology (WBE), and reports the application of these data for the risk assessment of alcohol on a population scale using the margin of exposure (MOE) approach. Raw 24-h composite wastewater samples were collected over a one-week period from 20 cities following a common protocol. For each sample a specific and stable alcohol consumption biomarker, ethyl sulfate (EtS) was determined by liquid chromatography coupled to tandem mass spectrometry. The EtS concentrations were used for estimation of per capita alcohol consumption in each city, which was further compared with international reports and applied for risk assessment by MOE. The average per capita consumption in 20 cities ranged between 6.4 and 44.3. L/day/1000 inhabitants. An increase in alcohol consumption during the weekend occurred in all cities, however the level of this increase was found to differ. In contrast to conventional data (sales statistics and interviews), WBE revealed geographical differences in the level and pattern of actual alcohol consumption at an inter-city level. All the sampled cities were in the "high risk" category (MOE
Comparative measurement and quantitative risk assessment of alcohol consumption through wastewater-based epidemiology: An international study in 20 cities
Quantitative measurement of drug consumption biomarkers in wastewater can provide objective information on community drug use patterns and trends. This study presents the measurement of alcohol consumption in 20 cities across 11 countries through the use of wastewater-based epidemiology (WBE), and reports the application of these data for the risk assessment of alcohol on a population scale using the margin of exposure (MOE) approach. Raw 24-h composite wastewater samples were collected over a one-week period from 20 cities following a common protocol. For each sample a specific and stable alcohol consumption biomarker, ethyl sulfate (EtS) was determined by liquid chromatography coupled to tandem mass spectrometry. The EtS concentrations were used for estimation of per capita alcohol consumption in each city, which was further compared with international reports and applied for risk assessment by MOE. The average per capita consumption in 20 cities ranged between 6.4 and 44.3 L/day/1000 inhabitants. An increase in alcohol consumption during the weekend occurred in all cities, however the level of this increase was found to differ. In contrast to conventional data (sales statistics and interviews), WBE revealed geographical differences in the level and pattern of actual alcohol consumption at an inter-city level. All the sampled cities were in the “high risk” category (MOE < 10) and the average MOE for the whole population studied was 2.5. These results allowed direct comparisons of alcohol consumption levels, patterns and risks among the cities. This study shows that WBE can provide timely and complementary information on alcohol use and alcohol associated risks in terms of exposure at the community level
A new supported TiO2 film deposited on stainless steel for the photocatalytic degradation of contaminants of emerging concern
A new supported catalyst composed of a nanostructured TiO2 film deposited on a stainless steel mesh (nanoTiO2-SS) using the Metal Organic Chemical Vapour Deposition (MOCVD) technique was evaluated for the photocatalytic degradation of a mixture of contaminants of emerging concern. Results showed that under the oxidative conditions tested, the nanoTiO2-SS catalyst demonstrated an efficiency in degrading the target contaminants higher than that observed under direct photolysis and photocatalysis using the conventional TiO2 Degussa P25 catalyst at the same amount of TiO2 participating to the photocatalysis. Specifically, the rate of removal of warfarin and trimethoprim obtained with the new catalyst was found twice the one observed by using TiO2 Degussa P25 and approximately 1.6 times faster for metoprolol, carbamazepine and gemfibrozil. An evaluation of the electrical energy per order magnitude of removal (EE/O) confirmed the enhanced performance of the new catalyst (24.3–31.8 kWh m−3 rather than 32.8–39.3 kWh m−3 for conventional TiO2) and that the performance is compound-dependent. Toxicity testing revealed that some assays are suitable for the investigation of bioactivity of treated waters containing contaminants of emerging concern at μg L−1 level. Specifically, the AMES Fluctuation Test, Fish Embryo Acute Toxicity Test and Green alga Selenastrum capricornutum test provided valuable results for an environmental impact assessment. On the other hand, the Daphnia magna and Vibrio fischeri acute toxicity tests were not sensitive enough to detect bioactivity in the samples analysed without prior pre-concentration