145 research outputs found

    Ecohydrology in Mediterranean areas: a numerical model to describe growing seasons out of phase with precipitations

    Get PDF
    International audienceThe probabilistic description of soil moisture dynamics is a relatively new topic in hydrology. The most common ecohydrological models start from a stochastic differential equation describing the soil water balance, where the unknown quantity, the soil moisture, depends both on spaces and time. Most of the solutions existing in literature are obtained in a probabilistic framework and under steady-state condition; even if this last condition allows the analytical handling of the problem, it has considerably simplified the same problem by subtracting generalities from it. The steady-state hypothesis, appears perfectly applicable in arid and semiarid climatic areas like those of African's or middle American's savannas, but it seems to be no more valid in areas with Mediterranean climate, where, notoriously, the wet season foregoes the growing season, recharging water into the soil. This moisture stored at the beginning of the growing season (known as soil moisture initial condition) has a great importance, especially for deep-rooted vegetation, by enabling survival in absence of rainfalls during the growing season and, however, keeping the water stress low during the first period of the same season. The aim of this paper is to analyze the soil moisture dynamics using a simple non-steady numerical ecohydrological model. The numerical model here proposed is able to reproduce soil moisture probability density function, obtained analytically in previous studies for different climates and soils in steady-state conditions; consequently it can be used to compute both the soil moisture time-profile and the vegetation static water stress time-profile in non-steady conditions. Here the differences between the steady-analytical and the non-steady numerical probability density functions are analyzed, showing how the proposed numerical model is able to capture the effects of winter recharge on the soil moisture. The dynamic water stress is also numerically evaluated, implicitly taking into account the soil moisture condition at the beginning of the growing season. It is also shown the role of different annual climatic parameterizations on the soil moisture probability density function and on the vegetation water stress evaluation. The proposed model is applied to a case study characteristic of Mediterranean climate: the watershed of Eleuterio in Sicily (Italy)

    Aggressiveness of eight Venturia inaequalis isolates virulent or avirulent to the major resistance gene Rvi6 on a non-Rvi6 apple cultivar

    Get PDF
    For sustainable management of scab-resistant apple cultivars, it is necessary to understand the role of aggressiveness in the adaptation of Venturia inaequalis populations and particularly the costs to the organism of acquiring additional virulence. The aims of the present study were (i) to identify the quantitative variables that are most important in determining the differences in aggressiveness among groups of V. inaequalis isolates, and (ii) to ascertain whether virulent and avirulent isolates of V. inaequalis differ significantly in aggressiveness. The aggressiveness of eight isolates that differed in their virulence to the major resistance gene Rvi6 was compared on the non-Rvi6 apple cv. Gala. Three components of aggressiveness, namely lesion density, the number of spores per square centimetre of leaf area, and the number of spores per lesion, were evaluated 21 days after inoculation, and the kinetics of lesion density over time were analysed in terms of maximum lesion density, length of latent period and rate of lesion appearance. On the second youngest but fully developed leaf at the time of inoculation, maximum lesion density in the virulent group was 20% lower and the latent period 7% longer, than in the avirulent group. However, the alternative hypothesis, namely that isolates had adapted to quantitative resistance present in cv. Gala depending on their cultivar of origin, could not be rejected. The analysis of the kinetics of lesion density by a non-linear mixed-effect model proved useful in the assessment of aggressiveness

    A Continuous Time-and-State Epidemic Model Fitted to Ordinal Categorical Data Observed on a Lattice at Discrete Times

    Get PDF
    We consider a spatio-temporal model to describe the spread of apple scab within an orchard composed of several plots. The model is defined on a regular lattice and evolves in continuous time. Based on ordinal categorical data observed only at some discrete instants, we adopt a continuous-time approach and apply a Bayesian framework for estimating unknown parameters

    Optical and Ultraviolet Observations of the Very Young Type IIP SN 2014cx in NGC 337

    Get PDF
    Extensive photometric and spectroscopic observations are presented for SN 2014cx, a type IIP supernova (SN) exploding in the nearby galaxy NGC 337. The observations are performed in optical and ultraviolet bands, covering from -20 to +400 days from the peak light. The stringent detection limit from prediscovery images suggests that this supernova was actually detected within about 1 day after explosion. Evolution of the very early-time light curve of SN 2014cx is similar to that predicted from a shock breakout and post-shock cooling decline before reaching the optical peak. Our photometric observations show that SN 2014cx has a plateau duration of ~ 100 days, an absolute V-band magnitude of ~ -16.5 mag at t~50 days, and a nickel mass of 0.056+-0.008 Msun. The spectral evolution of SN 2014cx resembles that of normal SNe IIP like SN 1999em and SN 2004et, except that it has a slightly higher expansion velocity (~ 4200 km/s at 50 days). From the cooling curve of photospheric temperature, we derive that the progenitor has a pre-explosion radius of ~ 640 Rsun, consistent with those obtained from SNEC modeling (~ 620 Rsun) and hydrodynamical modeling of the observables (~ 570 Rsun). Moreover, the hydrodynamical simulations yield a total explosion energy of ~ 0.4*10e51 erg, and an ejected mass of ~ 8 Msun. These results indicate that the immediate progenitor of SN 2014cx is likely a red supergiant star with a mass of ~ 10 Msun.Comment: 47 pages, 12 figures and 7 tables. Accepted by Ap

    Breeding for carrot resistance to Alternaria dauci without compromising taste

    Get PDF
    Developing carrot varieties highly resistant to Alternaria dauci is a top priority for breeders. Meanwhile, consumers are increasingly demanding as regards final product quality, particularly taste. Bitterness is one of the five common taste sensations, but it is rejected by most carrot consumers. Therefore, providing tools for efficient plant breeding of resistant, low bitter carrots would be helpful. While resistance QTLs (rQTLs) have already been identified for carrot resistance to A. dauci, the genetic control and mapping of the metabolites involved in bitterness perception have not been addressed so far. We identified the metabolites most involved in bitterness by combining chemical and sensory analyses of a set of resistant and susceptible carrot genotypes grown in different environments. We evaluated their genetic control and heritability in a segregating F2:3 population over 2 years of field trials and searched for colocalizations between rQTLs and metabolite QTLs (mQTLs) to evaluate the link between bitterness and resistance traits. Our results suggest that it is possible to increase resistance while favoring low bitter varieties by selecting genomic regions involved in the expression of one or the other trait and counter-selecting others when r- and mQTL colocalization is unfavorable

    The bright Type IIP SN 2009bw, showing signs of interaction

    Get PDF
    We present photometry and spectroscopy of the type IIP supernova 2009bw in UGC 2890 from few days after the outburst to 241 days. The light curve of SN 2009bw during the photospheric phase is similar to that of normal SNe IIP but with brighter peak and plateau (Mmax R = -17.82 mag, Mplateau R = -17.37 mag). The luminosity drop from the photospheric to the nebular phase is one of the fastest ever observed, ~2.2 mag in about 13 days. The radioactive tail of the bolometric light curve indicates that the amount of ejected 56 Ni is \approx 0.022 M\odot. The photospheric spectra reveal high velocity lines of H{\alpha} and H{\beta} until about 105 days after the shock breakout, suggesting a possible early interaction between the SN ejecta and pre-existent circumstellar material, and the presence of CNO elements. By modeling the bolometric light curve, ejecta expansion velocity and photospheric temperature, we estimate a total ejected mass of 8-12M\odot, a kinetic energy of ~0.3 foe and an initial radius of ~ 3.6 - 7 \times 10^13 cm.Comment: Accepted for publication in MNRAS, 19 pages, 13 figures, 9 table

    The s-process weak component: uncertainties due to convective overshooting

    Full text link
    Using a new s-nucleosynthesis code, coupled with the stellar evolution code Star2003, we performed simulations to study the impact of the convection treatment on the s-process during core He-burning of a 25 Msun star (ZAMS mass) with an initial metallicity of Z=0.02. Particular attention was devoted to the impact of the extent of overshooting on the s-process efficiency. The results show enhancements of about a factor 2-3 in s-process efficiency (measured as the average overproduction factor of the 6 s-only nuclear species with 60A9060\lesssim A\lesssim 90) with overshooting parameter values in the range 0.01-0.035, compared to results obtained with the same model but without overshooting. The impact of these results on the p-process model based on type II supernovae is discussed.Comment: 7 pages, 4 figures, accepted for publication in Astronomy & Astrophysic

    SN 2011ht: Confirming a Class of Interacting Supernovae with Plateau Light Curves (Type IIn-P)

    Full text link
    We present photometry and spectroscopy of the Type IIn supernova (SN) 2011ht, identified previously as a SN impostor. The light curve exhibits an abrupt transition from a well-defined ~120 day plateau to a steep bolometric decline. Leading up to peak brightness, a hot emission-line spectrum exhibits signs of interaction with circumstellar material (CSM), in the form of relatively narrow P-Cygni features of H I and He I superimposed on broad Lorentzian wings. For the remainder of the plateau phase the spectrum exhibits strengthening P-Cygni profiles of Fe II, Ca II, and H-alpha. By day 147, after the plateau has ended, the SN entered the nebular phase, heralded by the appearance of forbidden transitions of [O I], [O II], and [Ca II] over a weak continuum. At this stage, the light curve exhibits a low luminosity that is comparable to that sub-luminous Type II-P supernovae, and a relatively fast visual-wavelength decline that is significantly steeper than the Co-56 decay rate. However, the total bolometric decline, including the IR luminosity, is consistent with Co-56 decay, and implies a low Ni-56 mass of ~0.01 M(Sun). We therefore characterize SN 2011ht as a bona-fide core-collapse SN very similar to the peculiar SNe IIn 1994W and 2009kn. These three SNe define a subclass, which are Type IIn based on their spectrum, but that also exhibit well-defined plateaus and produce low Ni-56 yields. We therefore suggest Type IIn-P as a name for this subclass. Possible progenitors of SNe IIn-P, consistent with the available data, include 8-10 M(Sun) stars, which undergo core collapse as a result of electron capture after a brief phase of enhanced mass loss, or more massive M>25 M(Sun) progenitors, which experience substantial fallback of the metal-rich radioactive ejecta. In either case, the energy radiated by these three SNe during their plateau must be dominated by CSM interaction (abridged).Comment: accepted, post-proof version (includes new data

    Low luminosity Type II supernovae - IV. SN 2020cxd and SN 2021aai, at the edges of the sub-luminous supernovae class

    Get PDF
    Photometric and spectroscopic data for two Low Luminosity Type IIP Supernovae (LL SNe IIP) 2020cxd and 2021aai are presented. SN 2020cxd was discovered 2 d after explosion at an absolute magnitude of Mr = -14.02 ± 0.21 mag, subsequently settling on a plateau which lasts for ∼120 d. Through the luminosity of the late light curve tail, we infer a synthesized 56Ni mass of (1.8 ± 0.5) × 10-3 M⊙. During the early evolutionary phases, optical spectra show a blue continuum (T>T\, \gt 8000 K) with broad Balmer lines displaying a P Cygni profile, while at later phases, Ca ii, Fe ii, Sc ii, and Ba ii lines dominate the spectra. Hydrodynamical modelling of the observables yields RR\, \simeq 575 R⊙ for the progenitor star, with Mej = 7.5 M⊙ and EE\, \simeq 0.097 foe emitted during the explosion. This low-energy event originating from a low-mass progenitor star is compatible with both the explosion of a red supergiant (RSG) star and with an Electron Capture Supernova arising from a super asymptotic giant branch star. SN 2021aai reaches a maximum luminosity of Mr = -16.57 ± 0.23 mag (correcting for AV = 1.92 mag), at the end of its remarkably long plateau (∼140 d). The estimated 56Ni mass is (1.4 ± 0.5) × 10-2 M⊙. The expansion velocities are compatible with those of other LL SNe IIP (few 103 km s-1). The physical parameters obtained through hydrodynamical modelling are RR\, \simeq 575 R⊙, Mej = 15.5 M⊙, and E = 0.4 foe. SN 2021aai is therefore interpreted as the explosion of an RSG, with properties that bridge the class of LL SNe IIP with standard SN IIP events.GV acknowledges INAF for funding his PhD fellowship within the PhD School in Astronomy at the University of Padova. MLP acknowledges support from the plan ‘programma ricerca di ateneo UNICT 2020-22 linea 2” of the University of Catania. AR acknowledges support from ANID BECAS/DOCTORADO NACIONAL 21202412. NER acknowledges partial support from MIUR, PRIN 2017 (grant 20179ZF5KS), from the Spanish MICINN grant PID2019-108709GB-I00 and FEDER funds, and from the programme Unidad de Excelencia María de Maeztu CEX2020-001058-M. LG acknowledges financial support from the Spanish Ministerio de Ciencia e Innovación (MCIN), the Agencia Estatal de Investigación (AEI) 10.13039/501100011033, and the European Social Fund (ESF) ‘Investing in your future’ under the 2019 Ramón y Cajal programme RYC2019-027683-I and the PID2020-115253GA-I00 HOSTFLOWS project, from Centro Superior de Investigaciones Científicas (CSIC) under the PIE project 20215AT016, and the programme Unidad de Excelencia María de Maeztu CEX2020-001058-M. TMB acknowledges financial support from the Spanish Ministerio de Ciencia e Innovación (MCIN), the Agencia Estatal de Investigación (AEI) 10.13039/501100011033 under the PID2020-115253GA-I00 HOSTFLOWS project, and from Centro Superior de Investigaciones Científicas (CSIC) under the PIE project 20215AT016, and the programme Unidad de Excelencia María de Maeztu CEX2020-001058-M. Y-ZC is funded by China Postdoctoral Science Foundation (grant no. 2021M691821
    corecore