223 research outputs found

    Correlative Microscopy Of Bone In Implant Osteointegration Studies.

    Get PDF
    Routine morphological analyses usually include investigations by light microscopy (LM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Each of these techniques provides specific information on tissue morphology and all the obtained results are then combined to give an in-depth morphological overview of the examined sample. The limitations of this traditional comparative microscopy lie in the fact that each technique requires a different experimental sample, so that many specimens are necessary and the combined results come from different samples. The present study describes a technical procedure of correlative microscopy, which allows us to examine the same bone section first by LM and then, after appropriate processing, by SEM or TEM. Thanks to the possibility of analyzing the same undecalcified bone sections both by LM and SEM, the approach described in the present study allows us to make very accurate evaluations of old/new bone morphology at the bone-implant interface

    Involvement of the histaminergic system in the resuscitating effect of centrally acting leptin in haemorrhagic shock in rats

    Get PDF
    Leptin, acting centrally as a neuromodulator, induces the activation of the sympathetic nervous system, which may lead to a pressor action in normotensive animals. In haemorrhagic shock, leptin administered intracerebroventricularly (icv.) evokes the resuscitating effect, with long-lasting rises in mean arterial pressure (MAP) and heart rate (HR), subsequent increase in peripheral blood flows, and a 100% survival at 2 h. Since leptin is able to activate histaminergic neurons, and centrally acting histamine also induces the resuscitating effect with the activation of the sympathetic nervous system, in the present study, we investigated an involvement of the histaminergic system in leptin-evoked cardiovascular effects in haemorrhagic shock. The model of irreversible haemorrhagic shock, with MAP decreased to and stabilised at 20 - 25 mmHg, has been used. Leptin (20 μg) given icv. at 5 min of critical hypotension evoked 181.5% increase in extracellular hypothalamic histamine concentration during the first 10 min after injection. Rises in MAP, HR and renal, mesenteric and hindquarters blood flows induced by leptin were inhibited by icv. pre-treatment with histamine H1 receptor antagonist chlorpheniramine (50 nmol). In contrast, there was no effect of H2, H3 and H4 receptor antagonists ranitidine (25 nmol), VUF 5681 (25 nmol) and JNJ 10191584 (25 nmol), respectively. In conclusion, the histaminergic system is involved in centrally-acting leptin-induced resuscitating effect in haemorrhagic shock in rats

    Osteogenesis and morphology of the periimplant bone facing dental implants.

    Get PDF
    This study investigated the influence of different implant surfaces on peri-implant osteogenesis and implant face morphology of peri-implant tissues during the early (2 weeks) and complete healing period (3 months). Thirty endosseous titanium implants (conic screws) with differently treated surfaces (smooth titanium = SS, titanium plasma sprayed = TPS, sand-blasted zirconium oxide = Zr-SLA) were implanted in femur and tibiae diaphyses of two mongrel sheep. Histological sections of the implants and surrounding tissues obtained by sawing and grinding techniques were observed under light microscopy (LM). The peri-implant tissues of other samples were mechanically detached from the corresponding implants to be processed for SEM observation. Two weeks after implantation, we observed osteogenesis (new bone trabeculae) around all implant surfaces only where a gap was present at the host bone-metal interface. No evident bone deposition was detectable where threads of the screws were in direct contact with the compact host bone. Distance osteogenesis predominated in SS implants, while around rough surfaces (TPS and Zr-SLA), both distance and contact osteogenesis were present. At SEM analysis 2 weeks after implantation, the implant face of SS peri-implant tissue showed few, thin, newly formed, bone trabeculae immersed in large, loose, marrow tissue with blood vessels. Around the TPS screws, the implant face of the peri-implant tissue was rather irregular because of the rougher metal surface. Zr-SLA screws showed more numerous, newly formed bone trabeculae crossing marrow spaces and also needle-like crystals in bone nodules indicating an active mineralising process. After 3 months, all the screws appeared osseointegrated, being almost completely covered by a compact, mature, newly formed bone. However, some marrow spaces rich in blood vessels and undifferentiated cells were in contact with the metal surface. By SEM analysis, the implant face of the peri-implant tissue showed different results. Around the SS screws, the compact bone with areas of different mineralisation rate appeared very smooth, while around the rougher TPS screws, the bone still showed an irregular surface corresponding to the implant macro/microroughness. Around the Zr-SLA screws, a more regular implant-bone surface and sparse, calcified marrow spaces were detectable. Results from this research suggest that 2 weeks after implantation, trabecular bone represents the calcified healing tissue, which supports the early biological fixation of the implants. The peri-implant marrow spaces, rich in undifferentiated cells and blood vasculature, observed both 2 weeks and 3 months after surgery, favour the biological turnover of both early and mature peri-implant bone. The implant surface morphology strongly influences the rate and the modality of peri-implant osteogenesis, as do the morphology and arrangement of the implant face in peri-implant bone both during early healing (after 2 weeks) and when the implant is just osseointegrated; rough surfaces, and in particular Zr-SLA, seem to better favour bone deposition on the metal surface

    Melanocortin receptor agonist NDP-α-MSH improves cognitive deficits and microgliosis but not amyloidosis in advanced stages of AD progression in 5XFAD and 3xTg mice

    Get PDF
    Introduction: Alzheimer's disease (AD) is the most frequent cause of dementia and still lacks effective therapy. Clinical signs of AD include low levels of endogenous melanocortins (MCs) and previous studies have shown that treatment with MC analogs induces neuroprotection in the early stages of AD.Methods: We investigated the neuroprotective role of MCs in two transgenic mouse models of severe AD using 5 and 7 month-old (mo) 5XFAD mice and 9 and 12 mo 3xTg mice. These mice were subjected to a chronic stimulation of MC receptors (MCRs) with MC analogue Nle4-D-Phe7-alpha-melanocyte stimulating hormone (NDP-alpha-MSH, 340 mu g/kg, i.p.). Mouse behavior and ex-vivo histological and biochemical analyses were performed after 50 days of treatment.Results:Our analysis demonstrated an improvement in cognitive abilities of AD mice at late stage of AD progression. We also showed that these protective effects are associated with decreased levels of hyperphosphorylated Tau but not with A beta burden, that was unaffected in the hippocampus and in the cortex of AD mice. In addition, an age-dependent NDP effect on glial reactivity was observed only in 3xTg mice whereas a global downregulation of p38 mitogen-activated protein kinase was selectively observed in 7 mo 5XFAD and 14 mo 3xTg mice.Conclusion: Our results suggest that MCR stimulation by NDP-alpha-MSH could represent a promising therapeutic strategy in managing cognitive decline also at late stage of AD, whereas the effects on neuroinflammation may be restricted to specific stages of AD progression

    Type-1 Collagen differentially alters β-catenin accumulation in primary Dupuytren's Disease cord and adjacent palmar fascia cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dupuytren's Disease (DD) is a debilitating contractile fibrosis of the palmar fascia characterised by excess collagen deposition, contractile myofibroblast development, increased Transforming Growth Factor-β levels and β-catenin accumulation. The aim of this study was to determine if a collagen-enriched environment, similar to <it>in vivo </it>conditions, altered β-catenin accumulation by primary DD cells in the presence or absence of Transforming Growth Factor-β.</p> <p>Methods</p> <p>Primary DD and patient matched, phenotypically normal palmar fascia (PF) cells were cultured in the presence or absence of type-1 collagen and Transforming Growth Factor-β1. β-catenin and α-smooth muscle actin levels were assessed by western immunoblotting and immunofluorescence microscopy.</p> <p>Results</p> <p>DD cells display a rapid depletion of cellular β-catenin not evident in patient-matched PF cells. This effect was not evident in either cell type when cultured in the absence of type-1 collagen. Exogenous addition of Transforming Growth Factor-β1 to DD cells in collagen culture negates the loss of β-catenin accumulation. Transforming Growth Factor-β1-induced α-smooth muscle actin, a marker of myofibroblast differentiation, is attenuated by the inclusion of type-1 collagen in cultures of DD and PF cells.</p> <p>Conclusion</p> <p>Our findings implicate type-1 collagen as a previously unrecognized regulator of β-catenin accumulation and a modifier of TGF-β1 signaling specifically in primary DD cells. These data have implications for current treatment modalities as well as the design of <it>in vitro </it>models for research into the molecular mechanisms of DD.</p

    TRPV1 in Brain Is Involved in Acetaminophen-Induced Antinociception

    Get PDF
    Background: Acetaminophen, the major active metabolite of acetanilide in man, has become one of the most popular overthe- counter analgesic and antipyretic agents, consumed by millions of people daily. However, its mechanism of action is still a matter of debate. We have previously shown that acetaminophen is further metabolized to N-(4-hydroxyphenyl)-5Z,8Z,11Z,14Z-eicosatetraenamide (AM404) by fatty acid amide hydrolase (FAAH) in the rat and mouse brain and that this metabolite is a potent activator of transient receptor potential vanilloid 1 (TRPV1) in vitro. Pharmacological activation of TRPV1 in the midbrain periaqueductal gray elicits antinociception in rats. It is therefore possible that activation of TRPV1 in the brain contributes to the analgesic effect of acetaminophen. Methodology/Principal Findings: Here we show that the antinociceptive effect of acetaminophen at an oral dose lacking hypolocomotor activity is absent in FAAH and TRPV1 knockout mice in the formalin, tail immersion and von Frey tests. This dose of acetaminophen did not affect the global brain contents of prostaglandin E-2 (PGE(2)) and endocannabinoids. Intracerebroventricular injection of AM404 produced a TRPV1-mediated antinociceptive effect in the mouse formalin test. Pharmacological inhibition of TRPV1 in the brain by intracerebroventricular capsazepine injection abolished the antinociceptive effect of oral acetaminophen in the same test. Conclusions: This study shows that TRPV1 in brain is involved in the antinociceptive action of acetaminophen and provides a strategy for developing central nervous system active oral analgesics based on the coexpression of FAAH and TRPV1 in the brain

    Combined analgesics in (headache) pain therapy: shotgun approach or precise multi-target therapeutics?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pain in general and headache in particular are characterized by a change in activity in brain areas involved in pain processing. The therapeutic challenge is to identify drugs with molecular targets that restore the healthy state, resulting in meaningful pain relief or even freedom from pain. Different aspects of pain perception, i.e. sensory and affective components, also explain why there is not just one single target structure for therapeutic approaches to pain. A network of brain areas ("pain matrix") are involved in pain perception and pain control. This diversification of the pain system explains why a wide range of molecularly different substances can be used in the treatment of different pain states and why in recent years more and more studies have described a superior efficacy of a precise multi-target combination therapy compared to therapy with monotherapeutics.</p> <p>Discussion</p> <p>In this article, we discuss the available literature on the effects of several fixed-dose combinations in the treatment of headaches and discuss the evidence in support of the role of combination therapy in the pharmacotherapy of pain, particularly of headaches. The scientific rationale behind multi-target combinations is the therapeutic benefit that could not be achieved by the individual constituents and that the single substances of the combinations act together additively or even multiplicatively and cooperate to achieve a completeness of the desired therapeutic effect.</p> <p>As an example the fixesd-dose combination of acetylsalicylic acid (ASA), paracetamol (acetaminophen) and caffeine is reviewed in detail. The major advantage of using such a fixed combination is that the active ingredients act on different but distinct molecular targets and thus are able to act on more signalling cascades involved in pain than most single analgesics without adding more side effects to the therapy.</p> <p>Summary</p> <p>Multitarget therapeutics like combined analgesics broaden the array of therapeutic options, enable the completeness of the therapeutic effect, and allow doctors (and, in self-medication with OTC medications, the patients themselves) to customize treatment to the patient's specific needs. There is substantial clinical evidence that such a multi-component therapy is more effective than mono-component therapies.</p

    Ischaemic conditioning and targeting reperfusion injury: a 30 year voyage of discovery

    Get PDF
    To commemorate the auspicious occasion of the 30th anniversary of IPC, leading pioneers in the field of cardioprotection gathered in Barcelona in May 2016 to review and discuss the history of IPC, its evolution to IPost and RIC, myocardial reperfusion injury as a therapeutic target, and future targets and strategies for cardioprotection. This article provides an overview of the major topics discussed at this special meeting and underscores the huge importance and impact, the discovery of IPC has made in the field of cardiovascular research
    corecore