5,811 research outputs found

    Working Environment in Nursing: Needs Improvement?

    Full text link
    Background: Knowing the quality of life of professionals is important because it is related to job performance, better results, and greater productivity, which results in better patient care. Objective: To know the Professional Quality of Life perceived by the nurses at the Geriatric Hospital of Toledo (Spain). Method: A descriptive cross-section study was employed to measure the Professional Quality of Life of all healthcare nurses (69 in total) at the Geriatric Hospital of Toledo. The questionnaire used as a measuring instrument was the Professional Quality of Life - 35. The data obtained was analyzed by means of: descriptive statistics, single-factor ANOVA variance analysis, T Student tests, and simple and multiple regression analysis. The study was approved by both the research commission and the ethics commission at the Hospital Complex of Toledo. Participation in the study on behalf of the nursing staff was voluntary. Results: In total, 45 responses were obtained (65.2%). The overall mean score measured the perceived Professional Quality of Life to be low. In relation to the three dimensions evaluated in the study, the highest average found was in “intrinsic motivation,” followed by “workload”, and then “management support.” In the multivariate analysis, “management support” was shown as the most influential factor in the Professional Quality of Life with a 23% influence (P<0.001), followed by workload with 9% (P = 0.01). Conclusions: The professionals at the participating center perceive their workplace as having an elevated degree of responsibility, a large quantity of work, a high occurrence of rushes and fatigue, and all this with little support on behalf of management. Promotions are scarce or the policies for receiving a promotion are inadequate. The perception of Professional Quality of Life in nursing is low. The obtained results indicate a need for an organizing cultural change based on participation, motivation, and increased management support

    Presentación: Teoría arqueológica en español

    Get PDF
    El origen de la publicación de este volumen monográfico sobre teoría arqueológica surgió, como ocurre en muchas otras circunstancias de la vida, de una casualidad. Cierto día llegó a la revista un artículo bastante “raro” que el consejo de redacción consideró que, ni por el tema ni por el contexto, encajaba con la línea actual de Complutum. Es decir, el trabajo no se parecía en nada a lo que veníamos publicando en los últimos años. Por otro lado, determinados hechos recientes aconsejaban a los más atrevidos dentro de la Redacción tener un cuidado especial con lo que finalmente veía la luz en sus páginas. Ahora mismo ya no recordamos a quién se le ocurrió que una forma de aprovechar el trabajo, que por supuesto a los tres nos parecía interesante, podría ser publicarlo junto con otros de su misma o parecida cuerda.Peer Reviewe

    Competitividade na indústria do vestuário: uma avaliaçao a partir da perspectiva das redes de empresas aglomeradas territorialmente

    Get PDF
    O campo da organização industrial envolve o estudo de como a indústria está organizada e por quê. Essa organização se dá dentro de um continuum, onde de um lado existe a possibilidade de verticalizar o processo, através de uma organização hierárquica e, de outro, de adquirir os insumos no mercado, em uma relação de demanda e oferta. Formas alternativas a essas configurações têm sido discutidas na literatura, como é o caso das redes de empresas. O objetivo deste trabalho é avaliar a competitividade a partir da disponibilidade de recursos por parte de redes de empresas aglomeradas territorialmente. Foram tomados como recursos estratégicos, presentes em uma rede do tipo distrito industrial, a transferência de conhecimento entre as empresas, o papel das instituições de suporte industrial e a existência de relações sociais. Foram aplicados questionários aos dirigentes de empresas da indústria do vestuário e os dados foram tratados com estatística descritiva, testes de correlação e de comparação entre médias. Os resultados do estudo empírico apontam que se pode afirmar apenas parcialmente que as empresas aglomeradas territorialmente em uma rede do tipo distrito industrial têm disponibilidade de recursos estratégicos que geram competitividade superior àquelas dispersas geograficamente e que esses recursos se reportam às instituições de suporte industrial e ao relacionamento socioculturalThe field of industrial organization involves the study of as the industry is organized and the reason. This organization takes place inside of a continuum, where on the one hand, there is possibility to turn vertical the process, through a hierarchic organization and, on the other one, to acquire the inputs in the market, in a demand and offer relationship. Alternative forms to this configuration have been discussed in literature, as it is the case of the firm networks. This article presents a work inside of this context that explores the idea that in a firm network there are strategic resources which make possible the creation of competitive advantage for its members. The knowledge transfer among the firms, the role of the institutions of industrial support and the existence of social relationships was taken as present strategic resources in a firm network of industrial district kind. The results of the empiric research carried with clothes manufacturer companies point to the hypotheses concerning the resources could be partially accepted, since the most present resource in the studied firm network is the institutions of industrial support and its service

    Towards the optimisation of ceramic-based microbial fuel cells: A three-factor three-level response surface analysis design

    Get PDF
    © 2019 The Authors Microbial fuel cells (MFCs) are an environment-friendly technology, which addresses two of the most important environmental issues worldwide: fossil fuel depletion and water scarcity. Modelling is a useful tool that allows us to understand the behaviour of MFCs and predict their performance, yet the number of MFC models that could accurately inform a scale-up process, is low. In this work, a three-factor three-level Box–Behnken design is used to evaluate the influence of different operating parameters on the performance of air-breathing ceramic-based MFCs fed with human urine. The statistical analysis of the 45 tests run shows that both anode area and external resistance have more influence on the power output than membrane thickness, in the range studied. The theoretical optimal conditions were found at a membrane thickness of 1.55 mm, an external resistance of 895.59 Ω and an anode area of 165.72 cm2, corresponding to a maximum absolute power generation of 467.63 μW. The accuracy of the second order model obtained is 88.6%. Thus, the three-factor three-level Box–Behnken-based model designed is an effective tool which provides key information for the optimisation of the energy harvesting from MFC technology and saves time in terms of experimental work

    Nonparametric analysis of casein complex genes' epistasis and their effects on phenotypic expression of milk yield and composition in Murciano-Granadina goats

    Get PDF
    Improving knowledge on the causative polymorphisms or genes regulating the expression of milk quantitative and qualitative traits and their interconnections plays a major role in dairy goat breeding programs and genomic research. This information enables optimization of predictive and selective tools, to obtain better-performing animals to help satisfy market demands more efficiently. Goat milk casein proteins (αS1, αS2, β, and κ) are encoded by 4 loci (CSN1S1, CSN1S2, CSN2, and CSN3) clustered within 250 kb on chromosome 6. Among the statistical methods used to identify epistatic interactions in genome-wide qualitative association studies (GWAS), gene-based methods have recently grown in popularity due to their better statistical power and biological interpretability. However, most of these methods make strong assumptions about the magnitude of the relationships between SNP and phenotype, limiting statistical power. Thus, the aims of this study were to quantify the epistatic relationships among 48 SNP in the casein complex on the expression of milk yield and components (fat, protein, dry matter, lactose, and somatic cells) in MurcianoGranadina goats, to explain the qualitative nature of the SNP used to quantify the genotypes produced as a result. Categorical principal component analysis (CATPCA) was used to delimit and group the number of SNP studied depending on their implications in the explanation of milk yield and components variability. Afterward, nonlinear canonical correlation analysis was used to identify relationships among and within the SNP groups detected by CATPCA. Our results suggest that 79.65% of variability in the traits evaluated may be ascribed to the epistatic relationships across and within 7 SNP groups. Two partially overlapping groups of epistatically interrelated SNP were detected: one group of 21 SNP, explaining 57.56% of variability, and another group of 20 SNP, explaining 42.43% (multiple fit ≥ 0.1). Additionally, SNP18, 32, and 36 (CSN1S2, CSN1S1, and CSN2 loci, respectively) were the most significant SNP to explain intragroup epistatic variability (component loading &gt; |0.5|). Conclusively, milk yield and quality may not only depend on the specific casein gene pool of individuals, but may also be relevantly conditioned by the relationships set across and within such genes. Hence, studying epistasis in isolation may be crucial to optimize selective practices for economically important dairy traits

    Low gain avalanche detectors for high energy physics experiments

    Get PDF
    Trabajo presentado a la 10th Spanish Conference on Electron Devices, celebrada en Aranjuez (Madrid, España) del 11 al 13 de febrero de 2015.This paper describes a new concept of Silicon radiation detector with internal multiplication of the charge generated by the incident particle, known as Low Gain Avalanche Detector (LGAD), with a gain in the range of 10-20. The LGAD is addressed to tracking applications for high energy physics with enhanced performances compared to the conventional detectors based on the PiN diode structure. The physical behavior, the critical design challenges and the first experimental data on the fabricated LGAD prototypes is described in the paper.Peer Reviewe

    Methyl donor supply to heat stress-challenged polymorphonuclear leukocytes from lactating Holstein cows enhances 1-carbon metabolism, immune response, and cytoprotective gene network abundance

    Full text link
    [EN] Mechanisms controlling immune function of dairy cows are dysregulated during heat stress (HS). Methyl donor supply-methionine (Met) and choline (Chop-positively modulates innate immune function, particularly antioxidant systems of polymorphonuclear leukocytes (PMN). The objective of this study was to investigate the effect of Met and Chol supply in vitro on mRNA abundance of genes related to 1-carbon metabolism, inflammation, and immune function in short-term cultures of PMN isolated from mid-lactating Holstein cows in response to heat challenge. Blood PMN were isolated from 5 Holstein cows (153 +/- 5 d postpartum, 34.63 +/- 2.73 kg/d of milk production; mean +/- SD). The PMN were incubated for 2 h at thermal-neutral (37 degrees C; TN) or heat stress (42 degrees C; HS) temperatures with 3 levels of Chol (0, 400, or 800 mu g/mL) or 3 ratios of Lys:Met (Met; 3.6:1, 2.9:1, or 2.4:1). Supernatant concentrations of IL-1 beta, IL-6, and tumor necrosis factor-alpha were measured via bovine-specific ELISA. Fold-changes in mRNA abundance were calculated separately for Chol and Met treatments to obtain the fold-change response at 42 degrees C (HS) relative to 37 degrees C (TN). Data were subjected to ANOVA using PROC MIXED in SAS (SAS Institute Inc., Cary, NC). Orthogonal contrasts were used to determine the linear or quadratic effect of Met and Chol for mRNA fold-change and supernatant cytokine concentrations. Compared with PMN receiving 0 mu g of Chol/mL, heat-stressed PMN supplemented with Chol at 400 or 800 mu g/mL had greater fold-change in abundance of CBS, CSAD, GSS, GSR, and GPX1. Among genes associated with inflammation and immune function, fold-change in abundance of TLR2, TLR4, IRAK1, IL1B, and IL10 increased with 400 and 800 mu g of Chol/mL compared with PMN receiving 0 mu g of Chol/mL. Fold-change in abundance of SAHH decreased linearly at increasing levels of Met supply. A linear effect was detected for MPO, NFKB1, and SOD1 due to greater fold-change in abundance when Met was increased to reach Lys: Met ratios of 2.9:1 and 2.4:1. Although increasing Chol supply upregulated BAX, BCL2, and HSP70, increased Met supply only upregulated BAX. Under HS conditions, enhancing PMN supply of Chol to 400 mu g/mL effectively increased fold-change in abundance of genes involved in antioxidant production (conferring cellular processes protection from free radicals and reactive oxygen species), inflammatory signaling, and innate immunity. Although similar outcomes were obtained with Met supply at Lys:Met ratios of 2.9:1 and 2.4:1, the response was less pronounced. Both Chol and Met supply enhanced the cytoprotective characteristics of PMN through upregulation of heat shock proteins. Overall, the modulatory effects detected in the present experiment highlight an opportunity to use Met and particularly Chol supplementation during thermal stress.M. Vailati-Riboni was supported in part by Hatch funds under project ILLU-538-914, National Institute of Food and Agriculture (Washington, DC). The authors declare no conflict of interest.Lopreiato, V.; Vailati-Riboni, M.; Parys, C.; Fernández Martínez, CJ.; Minuti, A.; Loor, J. (2020). Methyl donor supply to heat stress-challenged polymorphonuclear leukocytes from lactating Holstein cows enhances 1-carbon metabolism, immune response, and cytoprotective gene network abundance. Journal of Dairy Science. 103(11):10477-10493. https://doi.org/10.3168/jds.2020-18638S104771049310311Abdelmegeid, M. K., Vailati-Riboni, M., Alharthi, A., Batistel, F., & Loor, J. J. (2017). Supplemental methionine, choline, or taurine alter in vitro gene network expression of polymorphonuclear leukocytes from neonatal Holstein calves. Journal of Dairy Science, 100(4), 3155-3165. doi:10.3168/jds.2016-12025Armentano, L. E., Bertics, S. J., & Ducharme, G. A. (1997). Response of Lactating Cows to Methionine or Methionine Plus Lysine Added to High Protein Diets Based on Alfalfa and Heated Soybeans. Journal of Dairy Science, 80(6), 1194-1199. doi:10.3168/jds.s0022-0302(97)76047-8Banerjee, R., Evande, R., Kabil, Ö., Ojha, S., & Taoka, S. (2003). Reaction mechanism and regulation of cystathionine β-synthase. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1647(1-2), 30-35. doi:10.1016/s1570-9639(03)00044-xBatistel, F., Arroyo, J. M., Bellingeri, A., Wang, L., Saremi, B., Parys, C., … Loor, J. J. (2017). Ethyl-cellulose rumen-protected methionine enhances performance during the periparturient period and early lactation in Holstein dairy cows. Journal of Dairy Science, 100(9), 7455-7467. doi:10.3168/jds.2017-12689Baumgard, L. H., & Rhoads, R. P. (2013). Effects of Heat Stress on Postabsorptive Metabolism and Energetics. Annual Review of Animal Biosciences, 1(1), 311-337. doi:10.1146/annurev-animal-031412-103644Bernabucci, U., Biffani, S., Buggiotti, L., Vitali, A., Lacetera, N., & Nardone, A. (2014). The effects of heat stress in Italian Holstein dairy cattle. Journal of Dairy Science, 97(1), 471-486. doi:10.3168/jds.2013-6611Bernabucci, U., Lacetera, N., Baumgard, L. H., Rhoads, R. P., Ronchi, B., & Nardone, A. (2010). Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal, 4(7), 1167-1183. doi:10.1017/s175173111000090xBoldyrev, A., Bryushkova, E., Mashkina, A., & Vladychenskaya, E. (2013). Why Is Homocysteine Toxic for the Nervous and Immune Systems? Current Aging Science, 6(1), 29-36. doi:10.2174/18746098112059990007Catozzi, C., Ávila, G., Zamarian, V., Pravettoni, D., Sala, G., Ceciliani, F., … Lecchi, C. (2020). In-vitro effect of heat stress on bovine monocytes lifespan and polarization. Immunobiology, 225(2), 151888. doi:10.1016/j.imbio.2019.11.023Chinenov, Y., Gupte, R., & Rogatsky, I. (2013). Nuclear receptors in inflammation control: Repression by GR and beyond. Molecular and Cellular Endocrinology, 380(1-2), 55-64. doi:10.1016/j.mce.2013.04.006Chorąży, M., Kontny, E., Marcinkiewicz, J., & Maśliński, W. (2002). Amino Acids, 23(4), 407-413. doi:10.1007/s00726-002-0204-0Coleman, D. N., Lopreiato, V., Alharthi, A., & Loor, J. J. (2020). Amino acids and the regulation of oxidative stress and immune function in dairy cattle. Journal of Animal Science, 98(Supplement_1), S175-S193. doi:10.1093/jas/skaa138Collier, R. J., Stiening, C. M., Pollard, B. C., VanBaale, M. J., Baumgard, L. H., Gentry, P. C., & Coussens, P. M. (2006). Use of gene expression microarrays for evaluating environmental stress tolerance at the cellular level in cattle1. Journal of Animal Science, 84(suppl_13), E1-E13. doi:10.2527/2006.8413_supple1xCouper, K. N., Blount, D. G., & Riley, E. M. (2008). IL-10: The Master Regulator of Immunity to Infection. The Journal of Immunology, 180(9), 5771-5777. doi:10.4049/jimmunol.180.9.5771Del Vesco, A. P., Gasparino, E., Grieser, D. de O., Zancanela, V., Soares, M. A. M., & de Oliveira Neto, A. R. (2015). Effects of methionine supplementation on the expression of oxidative stress-related genes in acute heat stress-exposed broilers. British Journal of Nutrition, 113(4), 549-559. doi:10.1017/s0007114514003535Ekremoğlu, M., Türközkan, N., Erdamar, H., Kurt, Y., & Yaman, H. (2006). Protective effect of taurine on respiratory burst activity of polymorphonuclear leukocytes in endotoxemia. Amino Acids, 32(3), 413-417. doi:10.1007/s00726-006-0382-2El-Benna, J., Hurtado-Nedelec, M., Marzaioli, V., Marie, J.-C., Gougerot-Pocidalo, M.-A., & Dang, P. M.-C. (2016). Priming of the neutrophil respiratory burst: role in host defense and inflammation. Immunological Reviews, 273(1), 180-193. doi:10.1111/imr.12447Esposito, G., Irons, P. C., Webb, E. C., & Chapwanya, A. (2014). Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows. Animal Reproduction Science, 144(3-4), 60-71. doi:10.1016/j.anireprosci.2013.11.007Fear, J. M., & Hansen, P. J. (2011). Developmental Changes in Expression of Genes Involved in Regulation of Apoptosis in the Bovine Preimplantation Embryo1. Biology of Reproduction, 84(1), 43-51. doi:10.1095/biolreprod.110.086249Gao, S. T., Guo, J., Quan, S. Y., Nan, X. M., Fernandez, M. V. S., Baumgard, L. H., & Bu, D. P. (2017). The effects of heat stress on protein metabolism in lactating Holstein cows. Journal of Dairy Science, 100(6), 5040-5049. doi:10.3168/jds.2016-11913Han, Z.-Y., Mu, T., & Yang, Z. (2014). Methionine protects against hyperthermia-induced cell injury in cultured bovine mammary epithelial cells. Cell Stress and Chaperones, 20(1), 109-120. doi:10.1007/s12192-014-0530-7Heiser, A., LeBlanc, S. J., & McDougall, S. (2018). Pegbovigrastim treatment affects gene expression in neutrophils of pasture-fed, periparturient cows. Journal of Dairy Science, 101(9), 8194-8207. doi:10.3168/jds.2017-14129Horowitz, M. (2001). Heat acclimation: phenotypic plasticity and cues to the underlying molecular mechanisms. Journal of Thermal Biology, 26(4-5), 357-363. doi:10.1016/s0306-4565(01)00044-4Hunter-Lavin, C., Davies, E. L., Bacelar, M. M. F. V. G., Marshall, M. J., Andrew, S. M., & Williams, J. H. H. (2004). Hsp70 release from peripheral blood mononuclear cells. Biochemical and Biophysical Research Communications, 324(2), 511-517. doi:10.1016/j.bbrc.2004.09.075Ingvartsen, K. L., & Moyes, K. (2013). Nutrition, immune function and health of dairy cattle. Animal, 7, 112-122. doi:10.1017/s175173111200170xJoshi, B. C., Joshi, H. B., McDowell, R. E., & Sadhu, D. P. (1968). Composition of Skin Secretions from Three Indian Breeds of Cattle Under Thermal Stress. Journal of Dairy Science, 51(6), 917-920. doi:10.3168/jds.s0022-0302(68)87105-xKobayashi, S. D., & DeLeo, F. R. (2009). Role of neutrophils in innate immunity: a systems biology‐level approach. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 1(3), 309-333. doi:10.1002/wsbm.32Kumar, H., Kawai, T., & Akira, S. (2011). Pathogen Recognition by the Innate Immune System. International Reviews of Immunology, 30(1), 16-34. doi:10.3109/08830185.2010.529976Lacetera, N., Bernabucci, U., Basiricò, L., Morera, P., & Nardone, A. (2009). Heat shock impairs DNA synthesis and down-regulates gene expression for leptin and Ob-Rb receptor in concanavalin A-stimulated bovine peripheral blood mononuclear cells. Veterinary Immunology and Immunopathology, 127(1-2), 190-194. doi:10.1016/j.vetimm.2008.09.020Lacetera, N., Bernabucci, U., Scalia, D., Basiricò, L., Morera, P., & Nardone, A. (2006). Heat Stress Elicits Different Responses in Peripheral Blood Mononuclear Cells from Brown Swiss and Holstein Cows. Journal of Dairy Science, 89(12), 4606-4612. doi:10.3168/jds.s0022-0302(06)72510-3Lecchi, C., Rota, N., Vitali, A., Ceciliani, F., & Lacetera, N. (2016). In vitro assessment of the effects of temperature on phagocytosis, reactive oxygen species production and apoptosis in bovine polymorphonuclear cells. Veterinary Immunology and Immunopathology, 182, 89-94. doi:10.1016/j.vetimm.2016.10.007Loos, H., Roos, D., Weening, R., & Houwerzijl, J. (1976). Familial deficiency of glutathione reductase in human blood cells. Blood, 48(1), 53-62. doi:10.1182/blood.v48.1.53.53Lopreiato, V., Vailati-Riboni, M., Bellingeri, A., Khan, I., Farina, G., Parys, C., & Loor, J. J. (2019). Inflammation and oxidative stress transcription profiles due to in vitro supply of methionine with or without choline in unstimulated blood polymorphonuclear leukocytes from lactating Holstein cows. Journal of Dairy Science, 102(11), 10395-10410. doi:10.3168/jds.2019-16413Lubos, E., Loscalzo, J., & Handy, D. E. (2011). Glutathione Peroxidase-1 in Health and Disease: From Molecular Mechanisms to Therapeutic Opportunities. Antioxidants & Redox Signaling, 15(7), 1957-1997. doi:10.1089/ars.2010.3586Lushchak, V. I. (2012). Glutathione Homeostasis and Functions: Potential Targets for Medical Interventions. Journal of Amino Acids, 2012, 1-26. doi:10.1155/2012/736837McGuire, M. A., Beede, D. K., DeLorenzo, M. A., Wilcox, C. J., Huntington, G. B., Reynolds, C. K., & Collier, R. J. (1989). Effects of Thermal Stress and Level of Feed Intake on Portal Plasma Flow and Net Fluxes of Metabolites in Lactating Holstein Cows2,3. Journal of Animal Science, 67(4), 1050-1060. doi:10.2527/jas1989.6741050xMin, L., Zheng, N., Zhao, S., Cheng, J., Yang, Y., Zhang, Y., … Wang, J. (2016). Long-term heat stress induces the inflammatory response in dairy cows revealed by plasma proteome analysis. Biochemical and Biophysical Research Communications, 471(2), 296-302. doi:10.1016/j.bbrc.2016.01.185Moyes, K. M., Drackley, J. K., Morin, D. E., & Loor, J. J. (2010). Greater expression of TLR2, TLR4, and IL6 due to negative energy balance is associated with lower expression of HLA-DRA and HLA-A in bovine blood neutrophils after intramammary mastitis challenge with Streptococcus uberis. Functional & Integrative Genomics, 10(1), 53-61. doi:10.1007/s10142-009-0154-7Moyes, K. M., Graugnard, D. E., Khan, M. J., Mukesh, M., & Loor, J. J. (2014). Postpartal immunometabolic gene network expression and function in blood neutrophils are altered in response to prepartal energy intake and postpartal intramammary inflammatory challenge. Journal of Dairy Science, 97(4), 2165-2177. doi:10.3168/jds.2013-7433Nakamura, M. (2000). Preconditioning decreases Bax expression, PMN accumulation and apoptosis in reperfused rat heart. Cardiovascular Research, 45(3), 661-670. doi:10.1016/s0008-6363(99)00393-4Oeckinghaus, A., & Ghosh, S. (2009). The NF- B Family of Transcription Factors and Its Regulation. Cold Spring Harbor Perspectives in Biology, 1(4), a000034-a000034. doi:10.1101/cshperspect.a000034Osorio, J. S., Ji, P., Drackley, J. K., Luchini, D., & Loor, J. J. (2014). Smartamine M and MetaSmart supplementation during the peripartal period alter hepatic expression of gene networks in 1-carbon metabolism, inflammation, oxidative stress, and the growth hormone–insulin-like growth factor 1 axis pathways. Journal of Dairy Science, 97(12), 7451-7464. doi:10.3168/jds.2014-8680Salama, A. A. K., Duque, M., Wang, L., Shahzad, K., Olivera, M., & Loor, J. J. (2019). Enhanced supply of methionine or arginine alters mechanistic target of rapamycin signaling proteins, messenger RNA, and microRNA abundance in heat-stressed bovine mammary epithelial cells in vitro. Journal of Dairy Science, 102(3), 2469-2480. doi:10.3168/jds.2018-15219Schell, M. T., Spitzer, A. L., Johnson, J. A., Lee, D., & Harris, H. W. (2005). Heat Shock Inhibits NF-kB Activation in a Dose- and Time-Dependent Manner. Journal of Surgical Research, 129(1), 90-93. doi:10.1016/j.jss.2005.05.025Silanikove, N. (2000). Effects of heat stress on the welfare of extensively managed domestic ruminants. Livestock Production Science, 67(1-2), 1-18. doi:10.1016/s0301-6226(00)00162-7Stankiewicz, A. R., Lachapelle, G., Foo, C. P. Z., Radicioni, S. M., & Mosser, D. D. (2005). Hsp70 Inhibits Heat-induced Apoptosis Upstream of Mitochondria by Preventing Bax Translocation. Journal of Biological Chemistry, 280(46), 38729-38739. doi:10.1074/jbc.m509497200Steel, G. J., Fullerton, D. M., Tyson, J. R., & Stirling, C. J. (2004). Coordinated Activation of Hsp70 Chaperones. Science, 303(5654), 98-101. doi:10.1126/science.1092287Sun, D., Chen, D., Du, B., & Pan, J. (2005). Heat Shock Response Inhibits NF-κB Activation and Cytokine Production in Murine Kupffer Cells. Journal of Surgical Research, 129(1), 114-121. doi:10.1016/j.jss.2005.05.028Taraktsoglou, M., Szalabska, U., Magee, D. A., Browne, J. A., Sweeney, T., Gormley, E., & MacHugh, D. E. (2011). Transcriptional profiling of immune genes in bovine monocyte-derived macrophages exposed to bacterial antigens. Veterinary Immunology and Immunopathology, 140(1-2), 130-139. doi:10.1016/j.vetimm.2010.12.002Trevisi, E., Jahan, N., Bertoni, G., Ferrari, A., & Minuti, A. (2015). Pro-Inflammatory Cytokine Profile in Dairy Cows: Consequences for New Lactation. Italian Journal of Animal Science, 14(3), 3862. doi:10.4081/ijas.2015.3862Tsan, M.-F., & Gao, B. (2004). Cytokine function of heat shock proteins. American Journal of Physiology-Cell Physiology, 286(4), C739-C744. doi:10.1152/ajpcell.00364.2003Vailati-Riboni, M., Zhou, Z., Jacometo, C. B., Minuti, A., Trevisi, E., Luchini, D. N., & Loor, J. J. (2017). Supplementation with rumen-protected methionine or choline during the transition period influences whole-blood immune response in periparturient dairy cows. Journal of Dairy Science, 100(5), 3958-3968. doi:10.3168/jds.2016-11812Yan, J., Meng, X., Wancket, L. M., Lintner, K., Nelin, L. D., Chen, B., … Liu, Y. (2012). Glutathione Reductase Facilitates Host Defense by Sustaining Phagocytic Oxidative Burst and Promoting the Development of Neutrophil Extracellular Traps. The Journal of Immunology, 188(5), 2316-2327. doi:10.4049/jimmunol.1102683Zhou, Z., Bulgari, O., Vailati-Riboni, M., Trevisi, E., Ballou, M. A., Cardoso, F. C., … Loor, J. J. (2016). Rumen-protected methionine compared with rumen-protected choline improves immunometabolic status in dairy cows during the peripartal period. Journal of Dairy Science, 99(11), 8956-8969. doi:10.3168/jds.2016-10986Zhou, Z., Ferdous, F., Montagner, P., Luchini, D. N., Corrêa, M. N., & Loor, J. J. (2018). Methionine and choline supply during the peripartal period alter polymorphonuclear leukocyte immune response and immunometabolic gene expression in Holstein cows. Journal of Dairy Science, 101(11), 10374-10382. doi:10.3168/jds.2018-14972Zhou, Z., Vailati-Riboni, M., Trevisi, E., Drackley, J. K., Luchini, D. N., & Loor, J. J. (2016). Better postpartal performance in dairy cows supplemented with rumen-protected methionine compared with choline during the peripartal period. Journal of Dairy Science, 99(11), 8716-8732. doi:10.3168/jds.2015-1052

    Eating quality of beef from biotypes included in the PGI “Ternera Asturiana” showing distinct physicochemical characteristics and tenderization pattern

    Get PDF
    determine if their differences in physicochemical characteristics and tenderization pattern during maturation (3 to 21 days) had an effect on the consumer evaluation of beef palatability. Biotype affected significantly pH, water holding capacity, chemical composition (Pb0.001) and meat lightness (Pb0.05). Ageing time affected significantly (Pb0.05) colour, meat toughness and sensory attributes in a different way within each biotype. Multivariate analysis showed two different meat groups: 1) meat from mh-genotypes, characterized by high juice losses, lightness (L*), protein content and high sensory acceptability at intermediate (7 and 14 days) ageing times; 2) meat from rustic (AM) breed and biotypes free of myostatin mutation (AV (+/+) and AV×AM), showing higher intramuscular fat, myoglobin content, and instrumental toughness and requiring longer storage times (21 days). This should be taken into account for the proper post-mortem management and commercialization of each product to achieve its best sensory quality
    corecore