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ABSTRACT

Improving knowledge on the causative polymor-
phisms or genes regulating the expression of milk 
quantitative and qualitative traits and their intercon-
nections plays a major role in dairy goat breeding pro-
grams and genomic research. This information enables 
optimization of predictive and selective tools, to ob-
tain better-performing animals to help satisfy market 
demands more efficiently. Goat milk casein proteins 
(αS1, αS2, β, and κ) are encoded by 4 loci (CSN1S1, 
CSN1S2, CSN2, and CSN3) clustered within 250 kb on 
chromosome 6. Among the statistical methods used to 
identify epistatic interactions in genome-wide qualita-
tive association studies (GWAS), gene-based methods 
have recently grown in popularity due to their better 
statistical power and biological interpretability. How-
ever, most of these methods make strong assumptions 
about the magnitude of the relationships between SNP 
and phenotype, limiting statistical power. Thus, the 
aims of this study were to quantify the epistatic rela-
tionships among 48 SNP in the casein complex on the 
expression of milk yield and components (fat, protein, 
dry matter, lactose, and somatic cells) in Murciano-
Granadina goats, to explain the qualitative nature 
of the SNP used to quantify the genotypes produced 
as a result. Categorical principal component analysis 
(CATPCA) was used to delimit and group the number 
of SNP studied depending on their implications in the 
explanation of milk yield and components variability. 
Afterward, nonlinear canonical correlation analysis was 
used to identify relationships among and within the 
SNP groups detected by CATPCA. Our results suggest 
that 79.65% of variability in the traits evaluated may 
be ascribed to the epistatic relationships across and 

within 7 SNP groups. Two partially overlapping groups 
of epistatically interrelated SNP were detected: one 
group of 21 SNP, explaining 57.56% of variability, and 
another group of 20 SNP, explaining 42.43% (multiple 
fit ≥ 0.1). Additionally, SNP18, 32, and 36 (CSN1S2, 
CSN1S1, and CSN2 loci, respectively) were the most 
significant SNP to explain intragroup epistatic vari-
ability (component loading > |0.5|). Conclusively, milk 
yield and quality may not only depend on the specific 
casein gene pool of individuals, but may also be rel-
evantly conditioned by the relationships set across and 
within such genes. Hence, studying epistasis in isola-
tion may be crucial to optimize selective practices for 
economically important dairy traits.
Key words: linkage disequilibrium, SNP, interactions, 
nonlinear canonical correlation analysis, OVERALS

INTRODUCTION

The Murciano-Granadina breed is one of the most 
internationally consolidated Spanish goat breeds, given 
its adaptability to new environments, wide grazing 
capacity, and milk quality and production, mostly for 
cheese production (Delgado et al., 2017). Recently 
implemented tools in the Murciano-Granadina breed-
ing program allow selection of breeding animals using 
molecular criteria based on the identification of genes 
linked to increased milk production and quality (Mar-
tin et al., 2017).

Contextually, given their relationship with the quan-
tity, quality, and technological properties of milk, the 
casein genes complex (CSN1S1, CSN1S2, CSN2, and 
CSN3) and the SNP that they comprise stand out 
among the most economically interesting trait-encod-
ing genetic structures. Genome-wide association studies 
primarily aim at identifying such SNP and genetic vari-
ants associated with traits of interest (Rentería et al., 
2013), but genes and their co-association should also be 
considered.
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One form of co-association is epistasis, which is 
linked to gene-gene interactions (GGI) and is often 
defined as a functional, compositional, or statistical 
interaction (Phillips, 2008). The statistical definition 
was given by Fisher (1919) and developed further by 
Cockerham (1954) and Kempthorne (1954), whereby 
the effect of GGI is treated as the deviation from addi-
tive genetic effects of single genes (Cordell, 2002). By 
contrast, from a functional perspective, epistasis can be 
defined as the phenotypic effect of a locus that depends 
on 1 or more loci, combining 1 or more variants that 
can give rise to a certain phenotype. Such interactions 
can occur with single-base variants (SNP) or whole 
genes (Upton et al., 2016). We suspect that an epistatic 
interaction may be occurring when direct genotype and 
phenotype association show a lack of success (Mackay 
and Moore, 2014)—for instance, the negative correla-
tions reported between Murciano-Granadina milk yield 
and components (Pizarro et al., 2019a,b). However, the 
detection of complex interactions between genes and 
environmental factors, or both, remains a statistical 
and computational challenge.

Gene-based analysis can account for multiple inde-
pendent functional variants within genes with a poten-
tial increase of power to identify GGI. Most statistical 
methods used to detect GGI consider SNP as the unit 
of association with the functional outcome, which is 
likely to be valid when mutations are closely linked to 
an SNP. However, when mutations causing the varia-
tion in a certain trait are not in complete linkage with 
any SNP, association analyses may be insufficient to 
interpret GGI. In these cases, the consideration of high-
er-level inheritable units (haplotypes, genotypes, genes, 
or specific regions in the analysis) may better capture 
the phenotypic variability that could be ascribed to 
epistatic interactions (Gabriel et al., 2002).

Horne and Camp (2004), suggested that principal 
component analysis (PCA) could evaluate multivariate 
SNP correlations to determine SNP clusters in linkage 
disequilibrium (LD) clusters to establish optimal sets of 
group-tagging SNP. This may provide a rather efficient 
method to quantify intragenic diversity, while minimiz-
ing the requirements to perform a valid informative 
association assessment. categorical PCA (CATPCA) 
presents some advantages compared with traditional 
haplotype block and haplotype-tagging SNP LD-based 
methods. Specifically, in the case of CATPCA, SNP 
do not need to be in Hardy-Weinberg equilibrium, nor 
do SNP LD groups need to be located in an adjoining 
DNA fragment. Hence, CATPCA can be performed 
without partially losing the variability of particular 
traits that can be ascribed to the proximal relationship 
among such SNP (Zhang and Wagener, 2008; Song et 
al., 2015).

In this context, nonlinear canonical correlation 
analysis (NLCCA) appears as a valid alternative for 
analysis of genomic data (Yamanishi et al., 2003), pro-
vided it considers higher-level hereditary units (such as 
genes or regions). In this way, NLCCA offers new op-
portunities to more reliably assess GGI (Kruger et al., 
2004), as they capture not only linear relationships but 
nonlinear correlations between genes. To this end, we 
quantified epistatic interactions of the expression levels 
among 48 SNP in the casein complex of Murciano-
Granadina goats through the application of CATPCA 
and NLCCA, to quantify the qualitative character of 
the SNP used in this study, estimating the effects of 
the genotypes encoded by the casein complex in regard 
to milk yield and components in Murciano-Granadina 
goats.

MATERIALS AND METHODS

Pre-Study Assumptions

The data set comprised the historical records of 
dairy controls for milk yield (expressed in kilograms) 
and content (fat, protein, DM, lactose expressed as 
percentage, and SCC expressed as cells per milliliter) 
of Murciano-Granadina goats until 2018 (n = 2,359,479 
records from 151,997 goats). Observations of animals 
with records that fell outside commonly reported ranges 
for the breed were discarded from the data set. Para-
metric assumptions of normality and homoscedasticity 
were tested on the whole pedigree to decide whether 
applying routinely used parametric tests would be ap-
propriate. Shapiro-Wilk Francia’s W test routine of the 
Test and Distribution Graphics package of the Stata 
version 15.0 software process (StataCorp, College Sta-
tion, TX) was used to test normality. The Levene test 
to determine variance homogeny, in the SPSS Statistics 
statistical program for Windows (version 24.0; IBM 
Corp, Armonk, NY), was used to assess homoscedastic-
ity. As common parametric assumptions were violated, 
a nonparametric approach was followed.

Animals

The individuals registered in the studbook of the Na-
tional Association of Breeders of Murciano-Granadina 
Goat Breed (Fuente Vaqueros, Spain) were ranked 
according to the official breeding value for milk yield 
and content that they obtained at the latest genetic 
evaluation at the time of sampling (published in 2015 
stud catalog). The 200 best goats in the rank belonged 
to the selection nucleus (Delgado et al., 2005) and 
were sampled for blood for casein complex genotyping 
(αS1-, αS2-, β-, and κ-casein). Afterward, individuals 
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with missing or incomplete registries for milk yield 
and content were discarded. As a result, 159 studbook-
registered individuals were retained in the analysis and 
genotyped. Sampling was performed at 28 farms in 
southern Spain at random periods, from 2005 to 2018. 
The age of the animals in the sample ranged from 1 yr 
to 9.15 yr.

Genotyping

We isolated DNA using a modification of the pro-
cedure described by Miller et al. (1988). To complete 
the procedure, buffy coats of nucleated cells obtained 
from anticoagulated blood (EDTA) were resuspended 
in 2-mL centrifugation silica membrane spin columns 
with 200 μL of a lysis/binding solution (5 mM guani-
dine hydrochloride, tween 20 nonionic detergent at 5%, 
NP40 cell lysis buffer at 5%, EDTA 30 mM, tris-HCl 
30 mM, pH 5.5) and vortexed. The cell lysates were 
digested at 60°C with 20 μL of a protease potassium 
solution (20 mg/mL). After digestion was complete, the 
product was cooled, and 200 μL of 96% ethanol were 
added. The cooled solution was transferred to a silica 
membrane spin column, placed in a 2-mL tube, and 
centrifuged at 16,640 × g for 1 min. Afterward, the 
contents of the tube were discarded, and the column 
was replaced in the centrifuge. Then, 500 μL of pre-
wash solution (2.5 M guanidine hydrochloride and 45% 
ethanol) was added and centrifuged at 16,640 × g for 1 
min. Again, the content was discarded, 500 μL of wash 
solution (100 mM NaCl, 10 mM tris-HCl, 80% ethanol) 
was added, and we centrifuged again at 16,640 × g for 3 
min. After centrifuging, we discarded the contents and 
placed the column in a new 1.5-mL tube, adding 200 
μL of TE buffer (10 mM tris-HCl, 0.2 mM Na2EDTA, 
pH 8). Then, we centrifuged at 11,950 × g, discarded 
the column, quantified the concentration to make sure 
that it was sufficient to perform PCR, and stored the 
DNA for later use. The regions from the casein loci 
previously reported to be polymorphic were assessed 
to determine the SNP to be used in this study. To this 
end, we selected 16 samples belonging to nonrelated 
animals selected at random from all the individuals 
registered in the Murciano-Granadina herdbook. The 
oligonucleotide sequences obtained and the SNP deter-
mined (promoters, UTRH3′ regions, and polymorphic 
exons) are shown in Supplemental Table S1 (https: / / 
doi .org/ 10 .3168/ jds .2019 -17833).

A Platinium High-Fidelity (Life Technologies, Carls-
bad, CA) PCR kit was used to amplify polymorphic 
regions. The Macrogen sequencing service (Macrogen 
Inc., Seoul, South Korea) was used to sequence the PCR 
product. We used MEGA7 software (www .megasoftware 

.net) to analyze pherograms and Ensembl Genome 
Browser 97 database to trace polymorphic regions 
(Hubbard et al., 2002) to previous annotations for SNP 
information (minor and major allelic frequencies, and 
location, among other information). Forty-eight SNP 
were identified in our sample, and these were genotyped 
using the KASP assay (LGC Limited, Fordham, UK), 
analyzing raw allele calls using KlusterCaller software 
(LGC Limited). Heterozygosity values of around 40% 
suggested that the number of SNP was sufficient to act 
as genomic controls to prevent the effects of population 
stratification (Hao et al., 2004).

Milk Performance Standardization

Murciano-Granadina farming policies are character-
ized by 2 kidding seasons per year (polyestric breed), 
with lactation periods of no longer than 210 to 240 d 
(Delgado et al., 2017). Total milk yield and components 
were estimated until 210 d of lactation and translated 
into kilograms, as described in Pizarro et al. (2019a,c).

Milk yield for each goat was computed through real 
production, following the equation

 RP d P Pi d n Pnj
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where RPj is real production of the jth goat; P1 is milk 
yield at first control; n is the number of controls; Pij 
is milk yield in ith control for jth goat; d1 is the days 
between parturition and first control; d2 is the days 
between the penultimate control and the last control; 
and Pnj is milk yield at the last control for jth goat.

Official control procedure is described in the Royal 
Decree Law 368/2005, of Apr. 8, 2005, which regulates 
official control of milk yield for genetic evaluation in bo-
vine, ovine, and caprine species of the Spanish Ministry 
of Agriculture (2005), and milking system depended on 
the farm (AT4, AT4T, AT4M, A6, AT6M, and AT6T). 
First and last controls were assessed individually for 
each goat, computing the days (d1) between the day the 
animal was born (BD) and the date of the first control 
(FC), using the following formula:

 d1 = FC − BD. 

Days (d2) between the penultimate control (PC) and 
the last control (LC) were calculated as follows:

 d2 = LC − PC. 
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Aiming to preserve differences between goats that could 
be potentially attributed to differences in the milking 
period among other factors, we included birthdate in-
formation and the date on which several controls were 
performed until 210 lactation days, as a way to normal-
ize milk yield for each goat.

Normalized milk yield per each goat at 210 d was 
calculated using the following formula:

 NPj = d1P1 + A + B, 

where NPj is the normalized yield for goat j, P1 is milk 
yield in the first control, and Pj is milk yield in the 
following control (j) after control i, A is the summation 
of milk yield during the whole lactation except for first 
and last control, and B is the summation of milk yield 
for last control of each normalized lactation at 210 d, 
Pi is milk yield in control i, and Pnj is milk yield in the 
last control:
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The model used to calculate normalized yields at 210 d 
is described by the following formula:
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for which MP210 is the accumulated milk yield until 210 
lactation days; pldci is milk yield during milk control i; 
pldci+1 is milk yield in the following milk control, and 
Ii,i+1 is the day interval between 2 consecutive controls. 
As a result, a total of 409 lactations with an average 

of 3.78 ± 2.05 lactations per animal were considered in 
running the statistical analysis.

Milk Composition Analysis and Productive Records

Milk sampling was performed every month and 
analyzed at the Official Milk Quality Laboratory in 
Córdoba (Spain), to quantify protein, fat, dry extract, 
lactose content, and SCC with a MilkoScan analyzer 
FT1 (Foss Analytics, Hillerød, Denmark). The data 
set comprised 2,594 productive records for milk yield 
and content belonging to the 159 goats that were geno-
typed. After the preliminary parametric assumption 
testing on all the data comprising the pedigree, para-
metric assumptions (normality and homoscedasticity) 
were tested on our study sample, as the distribution 
properties of the smaller-sized samples that are com-
monly used for expensive genotyping studies could have 
been biased as a result of the process of sample selec-
tion. Shapiro-Wilk Francia’s W test routine of the Test 
and Distribution Graphics package of the Stata Ver-
sion 15.0 software was used to test normality. Levene 
test for variance homogeny, in the SPSS Statistics for 
Windows statistical program, version 24.0, was used to 
assess homoscedasticity. Parametric assumptions were 
violated in our study sample. Hence, as this sample had 
been extracted from a non-normally distributed and 
heteroscedastic population as well, we ratified the use 
of a nonparametric statistical alternative.

Linear Regression Modeling

Categorical regression models were designed to iso-
late additive and dominance polygenic effects of each 
of the 48 SNPs from the effect of nongenetic factors. 
Categorical regression models can be useful methods to 
identify the linear relationship between variables and 
sets of predictive factors. To determine the validity of 
these regression models, determination power or predic-
tion efficiency was computed and is shown in Table 1. 

Pizarro et al.: CASEIN COMPLEX EPISTASIS ON MILK YIELD AND CONTENT

Table 1. Predictive efficiency or determination coefficient for standard linear regression model 1 designed to 
assess milk yield (kg), fat percentage, protein percentage, dry extract percentage, lactose percentage, and SCC 
(cells/mL)1

Variable R2
Adjusted 

R2 df F-value P-value

Milk yield (kg) 0.418 0.400 74 24.152 0.001
Fat % 0.249 0.227 74 11.183 0.001
Protein % 0.293 0.272 74 13.926 0.001
DM % 0.273 0.251 74 12.613 0.001
Lactose % 0.335 0.316 74 16.987 0.001
SCC (cells/mL) 0.174 0.150 74 7.113 0.001
1Data from Pizarro et al. (2019c).
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Categorical regression analysis was performed using the 
SPSS Statistics package for Windows, version 24.0.

The general linear regression model issued followed 
the simple equation Zy′ = β × Z, whose extended form 
was as follows:

 Zy′mfpdls = βfarmZfarm× βparturitionmonth × Zparturitionmonth   

+ βparturitionyear × Zparturitionyear + βparturitionseason  

× Zparturitionseason + βbirthnumber × Zbirthnumber + βcontrolmonth  

× Zcontrolmonth + βcontrolseason × Zcontrolseason + βcontrolyear  

× Zcontrolyear + βNC × ZNC + βmilkingsystem × Zmilkingsystem  

+ βalivenumber × Zalivenumber + βdeadnumber × Zdeadnumber  

+ βbirthtype × Zbirthtype + βDIM × ZDIM + βDFC × ZDFC  

+ βDLD × ZDLD + βdryingseason × Zdryingseason + βdryingmonth  

× Zdryingmonth + βdryingyear × Zdryingyear + βSNP1-48additive  

× ZSNP1-48additive + βSNP1-48dominance × ZSNP1-48dominance,

where Zy′mfpdls is the phenotypic record of each con-
tinuous dependent variable, namely, milk yield (m in 
subindex, expressed in kilograms), percentage of fat (d 
in subindex), protein (p in subindex), dry matter (d 
in subindex), lactose (l in subindex), and SCC (s in 
subindex, expressed in cells per milliliter) for a certain 
goat; β is the standardized coefficient or population 
slope coefficient for each factor (independent variables) 
as marked by subindex for the whole population; and 
Z is the specific value for that same factor for each 
individual. The independent factors considered in our 
regression models were the farm, delivery month, deliv-
ery year, delivery season, birth number, control month, 
control season, control year, control number, milking 
system, number of live kids, number of dead kids, birth 
type, days in milk, days to FC, days from last control 
to drying period, drying month, drying season, drying 
year, and additive and dominant effects from 48 SNP. 
Supplemental Table S2 (https: / / doi .org/ 10 .3168/ jds 
.2019 -17833) presents a summary of the factors consid-
ered in the model and their levels.

Statistical Assessment of Genetic Effects

The procedures and possibilities reported by Dag-
nachew et al. (2011) were followed, to determine and 
encode additive and dominance effects for each SNP. 
Dagnachew and co-authors proposed the matrix of 
SNP (additive and dominance) effects (Q) and catego-
rized the different possibilities (alleles and homozygous 
or heterozygous classification) within the matrix. The 

possibilities considered and encoded for additive effects 
were 1 when the SNP was homozygous for the minor al-
lele, 2 when the SNP was heterozygous, and 3 when the 
SNP was homozygous for the major allele, respectively. 
Additionally, for dominance effects, the possibilities 
encoded were 1 when the SNP was heterozygous and 2 
when the SNP was homozygous.

A Kruskal Wallis H test was performed to identify 
potential differences in the expression of milk yield and 
content across the possibilities considered for additive 
and dominance genetic effects for each SNP described 
above. When significant differences between possi-
bilities were detected, the Dunn test was performed 
to identify the particular possibility pair for which a 
significant difference had been detected. Additionally, 
Bonferroni’s correction was applied to prevent the oc-
currence of false-positive results. Once differences had 
been identified, a median test was carried out to rank 
medians across categories for each SNP. When a differ-
ent software is not mentioned, SPSS Statistics software 
for Windows, version 24.0, was used.

Dimensionality Reduction: LD and CATPCA

Dimensionality reduction in the relationship between 
genes was performed at a topographical level through 
study of LD and at a statistical level using CATPCA. 
Both techniques can be used to perform an efficient se-
lection of the minimum number of SNP able to capture 
the highest possible fraction of genetic diversity for a 
certain trait.

The ultimate value of SNP for linkage and associa-
tion mapping studies depends in part on the distribu-
tion of SNP allele frequencies and inter-SNP LD. Minor 
allele frequency is widely used in population genetics 
studies because it provides information to differentiate 
between common and rare variants in the population 
(minor allele frequency < 0.05). Minor allele frequency 
was calculated using default settings for all SNP in 
PLINK version 1.90 (Purcell et al., 2007). The extent 
of LD among casein complex SNP was computed with 
HaploView software (Dagnachew et al. 2011). The LD 
was scored through D′ (normalized LD coefficient) and 
r2 (LD coefficient of determination), as depicted in 
Figure 1. The total length of casein loci and distances 
between adjacent loci were determined according to the 
methodology proposed by Dagnachew et al. (2011).

At the statistical level, one of the most currently 
applied approaches to evaluate genotype-phenotype 
association is the chi-squared test, after which a cor-
rection for multiple comparisons is normally applied 
(Liu and Lin, 2018). However, the inference derived 
from this statistical approach could be biased, given 
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the increased risk of including large numbers of vari-
ables (some of which could have a confounding nature). 
Furthermore, using a unique test to evaluate such gen-
otype-phenotype association does not allow controlling 
for potential confounding factors such as population 
structure, genomic stratification, genetic environment, 
and GGI (epistasis).

Contextually, CATPCA arises as an alternative that 
enables assessment and reduction of the numerous and 
complex data derived from genomic evaluations with-
out losing statistical power as a result. Using CATPCA, 
and particularly Bonferroni correction, prevents the 
distortion and bias that occur as a result of including a 
large number of SNP in our model (increased likelihood 
of false positives). In turn, this maximizes the explana-
tory power of the variability described by such SNP 
and helps to discard potential misinterpretations of as-
sociations between SNP and specific phenotypes (Price 
et al., 2006; Novembre et al., 2008). In contrast to 
PCA, CATPCA allows variables to be scaled in differ-
ent units; thus, categorical variables can be considered, 
and nonlinear SNP or phenotype relationships can be 
traced. Kaiser-Varimax rotation was applied as a cor-
rection method to prevent the bias derived from some 
factors having high correlations with a small number 
of variables and no correlations in the rest. Afterward, 
Cronbach’s alpha was used to determine the validity or 
reliability of the procedure used (Figure 2). By proce-
dure validity, we mean the degree to which a certain 
set of factors (casein SNP) measures what it claims to 
measure (CSN1S1, CSN1S2, CSN2, and CSN3).

Nonlinear Canonical Correlation Between Sets

Once CATPCA dimensions or clusters have been 
identified and the number of representative SNP within 
such clusters has been reduced, we can study the extent 
to which such clustering dimensions interrelate using 
NLCCA or the OVERALS procedure. A clustering 
dimensionality criterion of ≥80% of explained vari-
ability is required in order to consider that the output 
of CATPCA validly measures for the same construct: 
in our case, the variability found in milk yield and 
components. This criterion not only helps reduce the 
number of SNP to consider without losing explanatory 
power, but also helps identify the number of dimen-
sions that are needed to capture all the variability in 
milk yield and composition, and to locate the most 
representative SNP within such clustering dimensions. 
Once SNP clusters (CATPCA dimensions) have been 
delimited, NLCCA can be used to identify the levels or 
dimensions across which SNP intercluster relationships 
are established (NLCCA dimensions). In NLCCA, if 
all variables are specified as ordinal, single nominal, 
or numerical, the maximum number of relationship 
dimensions required to consider that the output of 
NLCCA is valid is the lesser of the following 2 values: 
the number of observations (n = 2,594) minus 1, or the 
total number of variables (Meulman and Heiser, 2012).

In NLCCA, the higher the number of dimensions 
is, the higher the ability to capture variability may 
be as well. However, NLCCA is a reductive statistical 
technique that helps to maximize the power of clus-

Pizarro et al.: CASEIN COMPLEX EPISTASIS ON MILK YIELD AND CONTENT

Figure 1. Haplotype scheme using the default blocks in the sample data set for casein complex in Murciano-Granadina goats. Population 
frequencies are shown next to each haplotype, and lines show the most common crossings from one block to the next, with thicker lines showing 
more common crossings than thinner lines. Shown beneath the crossing lines is multilocus D′, which is a measure of the linkage disequilibrium 
between 2 adjacent blocks. The closer to 0 the value is, the greater the amount of historical recombination between 2 adjacent blocks.
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tering dimensions explaining SNP interrelationships 
(Table 2). In this context, we must reduce the number 
of dimensions until we reach the minimum number of 
dimensions that is able to explain the greatest percent-
age of variability in milk yield and composition, at an 
acceptable loss level. By an acceptable loss level, we 
mean the situation in which the loss from excluding 
an additional dimension is lower than the increase in 
explained variability obtained from considering such 
additional clustering dimension (Table 3). The basis for 

dimension exclusion or inclusion is that a single SNP 
may only be important when it provides information 
that has not already been explained by other SNP in 
the same dimension (Hsieh, 2000). In total, 40 SNP 
(reduced from 48 SNP in CATPCA) with nominal scal-
ing levels (defined in the Linear Regression Modeling 
and Statistical Assessment sections of this study) were 
considered.

Epistatic relationships may be established at both 
intercluster and intracluster levels. For each SNP, the 

Pizarro et al.: CASEIN COMPLEX EPISTASIS ON MILK YIELD AND CONTENT

Figure 2. Categorical principal component analysis (CATPCA) result summary for the 48 SNP considered in the study of Murciano-
Granadina goat casein complex. Cronbach’s α values are reported for each of the principal components (PC) determined.
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single fit corresponds to the squared weight and is 
equal to the variance of the single category coordinates. 
By examining how the single fit is broken down across 
dimensions, we are able to determine the relation-
ship dimension for which each SNP discriminates the 
most, or how possible categories within SNP (alleles 
for additive component of SNP and homozygous or 
heterozygous classification for dominance component) 
distribute across dimensions (Dania et al., 2013). By 
examining multiple fit values, we can determine which 
SNP discriminate best for interdimensional relation-
ships. Those SNP that, individually or in sum, show a 
higher value for multiple fits of more than 0.1 (Table 
3) may have played a more important role in the ex-
planation of variability in milk yield and components 
that should be ascribed to intercluster relationships. By 
assessing single fit (Table 3) and NLCCA component 
loadings (Table 4), we can infer which are the SNP that 
more relevantly participate in the explanation of the 
variability in milk yield and components that may be 
ascribed to the interaction occurring among the SNP 
clustered within a particular dimension. By examining 
how the single fit of the variables is broken down across 
this dimension, we can determine which are the SNP 
that reinforced such epistatic interaction.

RESULTS

Linear Regression Modeling

The determination coefficients (R2) and significance 
of the linear models designed to isolate additive and 
dominance polygenic effects of each of the 48 SNP from 
the effects of nongenetic factors and to predict for milk 
yield and components are shown in Table 1. The R2 
values ranged from 17.4% to 41.8% for SCC and milk 
yield, respectively, indicating moderately low to moder-
ately high predictive power.

Statistical Assessment of Genetic Effects  
and Dimensionality Reduction

Comparing Figures 1 and 2, we can infer that CAT-
PCA method is more suitable than existing haplotype-

tagging SNP methods, as it suggests the optimal 
number of SNP to choose and maximizes the amount 
of explained variance by a candidate gene or group 
of candidate genes, such as the casein complex in our 
study, using a minimal number of SNP (Horne and 
Camp, 2004).

The most efficient model (Cronbach’s alpha value ≥ 
0.700) comprised 7 dimensions (Figure 2). A total of 
40 SNP contributed to the 7-dimensional model in a 
meaningful way (factor loadings > |0.5| for CATPCA). 
The different components (PC1, PC2, PC3, PC4, PC5, 
PC6, and PC7) were best described by the SNP high-
lighted in bold in Table 4. We discarded SNP7, 9, 11, 
21, 27, 30, 33, and 34, as they were not involved in any 
dimension (they were confounding SNP).

Analysis of LD in the region—that is, the level of cor-
relation between nearby variants such that the alleles 
at neighboring polymorphisms (observed on the same 
chromosome) are associated within a population more 
often than if they were unlinked—revealed 8 distinct 
LD blocks based on the threshold of D′ > 0.80. Two 
blocks were found in CSN1S2 comprising 5 SNP (2–6 
and 10; and 12–15); 3 blocks were found in CSNS1 
comprising 5, 2, and 3 SNP (17 and 19–22; 23, 25, and 
26; and 28–29, respectively); 1 block involving CSN2 
and CSN3 comprising 8 SNP (24–41); and 2 blocks in 
CSN3 comprising 2 SNP each (42–43 and 44–45), as 
shown in Figure 1. Four of these blocks were in high 
disequilibrium (D′ ≈ 0.80). However, as the distances 
were lower than 1 Mb, high LD could be considered 
when D′ is over 0.20.

The genotypes accounting for the highest median for 
milk yield (expressed in kilograms), fat, protein, DM, 
lactose content (expressed as percentage), and SCC 
(expressed as cells per milliliter) for each SNP and lo-
cus are shown in Table 5 and Supplemental Table S3 
(https: / / doi .org/ 10 .3168/ jds .2019 -17833).

Nonlinear Canonical Correlation Between Sets

Eigenvalues were high (0.917 and 0.676 for dimensions 
1 and 2, respectively). Hence, the actual fit value was 
1.593. A bidimensional solution was chosen, so 1.593/2 
= 79.65% of the variation was computed. Actual fit 

Pizarro et al.: CASEIN COMPLEX EPISTASIS ON MILK YIELD AND CONTENT

Table 2. Eigenvalues for the 2-dimensional solutions of nonlinear canonical correlation analysis for SNP of Murciano-Granadina goats, sets 1–7 
(n = 159)

Item Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Mean Eigenvalue

Dimension 1 0.007 0.016 0.014 0.017 0.315 0.015 0.196 0.083 0.917
Dimension 2 0.055 0.807 0.284 0.872 0.159 0.05 0.042 0.324 0.676
Fit1 0.062 0.823 0.298 0.889 0.474 0.065 0.238 0.407 1.593
1Eigenvalue is a goodness-of-fit measure, which ranges from 0 to 1, indicating the level of relationship shown by each dimension; the sum of 
these values is the total fit.

https://doi.org/10.3168/jds.2019-17833
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for the first dimension was 0.917/1.593 = 57.56% and 
0.676/1.593 = 42.43% for the second dimension, respec-
tively. Table 2 shows a summary of loss functions for 
each dimension and set. Average loss was 2 − 1.593 = 
0.407 in our study and not necessarily high. The num-
ber of dimensions was equal to 2 (0.407 + 1.593 = 2).

For dimension 2, SNP18 (the CSN1S2 gene) proved 
to be the one for which individuals were most likely to 
present the same allele, C over T (component loading > 
|0.5|), as shown in Table 4. By contrast, for dimension 
1, SNP 1 to 6, 8, 10, 14, and 15 proved to be the most 
representative ones to explain intergroup variability 
and to reinforce the epistatic interaction (multiple fit 
> 0.1), with genotypes determined by the same being 
A/C, T/C, G/C, G/C, G/A, C/T, A/G, A/G, G/A, 
G/T, and T/C, respectively. From highest to lowest, 
relative frequencies were sorted as C, T, G, and A. 
When analyzing dominance ratios (using the > sign 
to represent the dominance effect of one allele on the 
next), we found that A > C and G for SNP1 presented 
a significant relationship (P < 0.01) with milk yield, 
and A > C and G for SNP8 presented a significant 
relationship (P < 0.01) with SCC. We found that G 
> A and T, for SNP4 and 14, respectively, presented a 
significant relationship (P < 0.01) with lactose content. 
We found that C > T, for SNP5, were significantly 
correlated (P < 0.01) with milk yield and lactose con-
tent, whereas T > C for SNP15 presented a significant 
relationship (P < 0.01) with lactose content.

For dimension 2, SNP 2, 3, 8, 10, 13 to 15, 17, and 18 
(the CSN1S2 gene) were reported to be the most rep-
resentative ones to explain intergroup variability and 
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Table 4. Component loadings for nonlinear canonical correlation 
analysis of Murciano-Granadina goats for SNP sets 1–7 (n = 159)

SNP set  Variable

Dimension

1 2

1  SNP20a −0.041 0.455
 SNP20d −0.066 −0.084
 SNP22a −0.045 0.191
 SNP22d −0.053 0.244
 SNP23a −0.056 −0.074
 SNP23d −0.066 −0.084
 SNP25a 0.384 0.428
 SNP25d −0.066 −0.084
 SNP29a 0.273 0.378
 SNP29d 0.276 0.383
 SNP31a 0.189 0.375
 SNP31d 0.203 −0.101
 SNP32a 0.439 0.503*
 SNP32d −0.066 −0.084
 SNP36d −0.103 0.257
 SNP37a 0.156 −0.180
 SNP37d −0.124 −0.159

2  SNP1a 0.120 0.186
 SNP1d 0.141 0.207
 SNP4a −0.121 0.163
 SNP4d −0.117 0.224
 SNP5a −0.077 −0.094
 SNP5d 0.141 0.207
 SNP6a −0.062 −0.070
 SNP6d 0.140 0.203
 SNP16a −0.084 0.200
 SNP16d −0.117 0.224
 SNP17a −0.140 0.039
 SNP17d −0.047 0.418

3  SNP2a 0.150 −0.102
 SNP2d −0.083 0.286
 SNP3a −0.155 −0.166
 SNP3d −0.085 0.285
 SNP10a −0.167 0.139
 SNP10d −0.167 0.139
 SNP12a 0.054 0.068
 SNP12d 0.152 0.246
 SNP13a 0.044 0.270
 SNP13d 0.139 −0.113
 SNP14a −0.158 −0.266
 SNP14d 0.159 0.258
 SNP15a −0.165 −0.012
 SNP15d −0.094 0.274

4  SNP39a 0.034 0.069
 SNP39d 0.121 0.184
 SNP40a −0.100 0.149
 SNP40d −0.103 0.247
 SNP41a 0.016 0.043
 SNP41d 0.123 0.191
 SNP42a −0.162 0.086
 SNP42d −0.129 0.200
 SNP43a −0.148 0.193
 SNP43d −0.122 0.219
 SNP44d −0.107 0.263
 SNP48a −0.154 0.186
 SNP48d −0.128 0.208

5  SNP19a −0.204 0.239
 SNP19d −0.172 −0.151
 SNP24a 0.214 0.274
 SNP24d −0.164 −0.183
 SNP26a 0.050 0.134
 SNP26d 0.130 0.195
 SNP28a −0.207 −0.014
 SNP28d −0.167 0.173

Continued

Table 4 (Cotninued). Component loadings for nonlinear canonical 
correlation analysis of Murciano-Granadina goats for SNP sets 1–7 (n 
= 159)

SNP set  Variable

Dimension

1 2

 SNP35a −0.201 0.239
 SNP35d −0.172 −0.147

6  SNP8a 0.467 −0.198
 SNP8d −0.083 −0.190
 SNP38a −0.071 −0.161
 SNP45a 0.151 −0.219
 SNP45d 0.150 −0.236
 SNP46a 0.278 −0.015
 SNP46d −0.117 0.114
 SNP47a −0.129 −0.256
 SNP47d −0.127 −0.225

7  SNP44a 0.110 0.246
 SNP18a 0.231 0.591*
 SNP18d 0.306 −0.187
 SNP36a 0.891* −0.066

*Significant component loadings (>|0.5|). Component loadings >|0.5| 
may suggest a greater potential to describe within-SNP cluster vari-
ability.
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the ones to reinforce the epistatic interaction the most 
within dimension 2 (multiple fit > 0.1). The genotypes 
that these SNP determine were C/T, G/C, A/G, G/A, 
C/T, G/T, T/C, G/C, and C/T, respectively. In regard 
to dominance ratios (with the sign > representing the 
dominance effects of one allele on the next), we found 
C > T, for SNP2 and SNP18, and a significant effect (P 
< 0.01) was found on the percentage of protein and lac-
tose, respectively. Additionally, G > C, for SNP3 and 
SNP17, reported a significant association with protein 
percentage and milk yield, respectively.

For CSN1S2, SNP8 A allele presented a significant 
dominant character over G for protein and SCC (P 
< 0.01). We found that SNP10 reported a significant 
dominance effect of allele G over A for milk yield and 

all components (fat, protein, DM, lactose percentage) 
and SCC (Table 5). We found that SNP13 reported a 
significant dominance relationship of C over T for pro-
tein and lactose content (%), whereas SNP15 reported 
the same significant dominance allelic behavior but 
only on the lactose component. We found that SNP14 
reported a significant dominance effect of G allele over 
T for lactose.

For the CSN1S1 gene, SNP32 in dimension 2 proved 
to be the one for which individuals were most likely to 
present the same allele, A over G (component loading 
> |0.5|), as shown in Table 4. For dimension 1 for the 
same gene, SNP 19, 20, 22, 24 to 26, 28, and 31 were 
the most representative to explain intergroup variabili-
ty and to most reinforce the epistatic interaction within 
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Table 5. Summary for Bonferroni’s significant (P < 0.01) genotypes accounting for the highest median for milk yield, fat, protein, DM, and 
lactose contents, and SCC for each SNP and locus after Dunn test and independent median test1

Locus  SNP  
Milk yield 
(kg)  

Fat 
(%)  

Protein 
(%)  

DM 
(%)  

Lactose 
(%)  

SCC 
(cells/mL)

CSN1S2 
 (αS2-casein)

SNP1 AC AA AA AA AC AC
SNP2 CT CC CC CC CT ns
SNP3 GC GG GC GG GC ns
SNP4 GG GG GG GG GA GA
SNP5 CT CC CC CC CT CT
SNP6 AA AA AA AA AG AG
SNP8 GG AA AA AG GG AG
SNP10 GA GG GA GG GG GA
SNP12 GA AA ns AA AG GG
SNP13 CT CC CT CC CT TT
SNP14 GT GG ns GG GT TT
SNP15 CT TT ns TT TC CC
SNP16 TT CC TT TT TC TC
SNP17 GC TT ns GG GC CC
SNP18 TT TT CC TT CT TT

CSN1S1 
 (αS1-casein)

SNP19 GG AA ns AA AA GA
SNP20 GG AA GA AA AA AA
SNP22 TT CC ns CC CC TC
SNP23 AA GG AG GG GG GG
SNP24 ns AA AA GG GG AG
SNP25 ns GG AG GG GG ns
SNP26 GG AA AA ns GG ns
SNP28 GG Ns CC ns CC GC
SNP29 AG GG ns GG GG ns
SNP31 TT CC TC CC CC CC
SNP32 ns GG AG CC GG ns

CSN2 
 (β-casein)

SNP35 ns GG GG AA AA GA
SNP36 TT CC CC CC TT CT
SNP37 CC TT ns ns TT CT

CSN3 
 (κ-casein)

SNP38 ns TG GG ns TG GG
SNP39 CT TT TT TT CT ns
SNP40 TC TT ns ns ns CC
SNP41 AT TT TT TT AT ns
SNP42 .-:AATC AATC: AATC AATC: AATC AATC: AATC ns ns
SNP43 GA AA AA AA ns GA
SNP44 GT GG ns GG ns GT
SNP45 TT CC TT CC CT TT
SNP46 TT AT TT AA ns ns
SNP47 ns ns CC GG GC CC
SNP48 AG GG GG GG ns ns

1Boldface type indicates dominant alleles accounting for the highest median for each variable. Italic type indicates codominant alleles account-
ing for the highest median for each variable. Underlining indicates recessive alleles accounting for the highest median for each variable. ns = 
nonsignificant differences reported. Accessed from Pizarro et al., 2019c. 
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dimension 1 (multiple fit > 0.1). The genotypes that 
these SNP determined were A/G, G/A, T/C, A/G, 
A/G, A/G, G/C, and T/C, respectively. When the 
relative frequencies for these alleles were sorted from 
highest to lowest, the following series was obtained: A 
= G and C = T (with the equal sign meaning the same 
frequency). When analyzing dominance relationships, 
we found that no dominance effect was reported for 
SNP 19, 22, and 28. The SNP20 G allele presented 
a significant dominant relationship over A (P < 0.01) 
on protein content and milk yield. The same situation 
was described for SNP24 and SCC, and for SNP26 
and lactose content, respectively. On the contrary, A 
> G for SNP25 presented a significant relationship 
(P < 0.01) with protein content, and alleles T > C 
for SNP31 presented a significant effect (P < 0.01) on 
protein content.

For dimension 2 (the CSN1S1 gene), we found that 
the SNP 19, 20, 22, 24, 25, 28, 29, and 31 were the most 
representative for explaining intergroup variability and 
were the ones to most reinforce the epistatic interaction 
within dimension 2 (multiple fit > 0.1), with the geno-
types determined by them accounting for the following: 
G/A, G/A, T/C, A/G, A/G, G/C, A/G, and T/C, re-
spectively. The relative frequencies for both alleles were 
the same in all cases, and the same circumstances de-
scribed above were replicated, with the exception that 
no repercussion of SNP26 was found. Despite SNP29 
having repercussions on the epistatic interaction (it was 
not relevant for dimension 1 of the CSN1S1 gene), its 
alleles did not report any dominance relationship.

For the CSN2 gene, component loading in dimension 
1 proved SNP36 to be the one for which individuals 
were most likely to present the same allele, C over T, 
out of all the SNP and caseins evaluated in this study 
and the one accounting for the highest implication on 
within SNP group interaction (component loading > 
|0.5|), as shown in Table 4. For dimension 1, the allelic 
combination CT resulted in the highest levels for SCC 
(with C being dominant over T). In contrast, for dimen-
sion 2, SNP18 was reported to be the most participa-
tive in the epistatic interaction; however, no dominance 
relationship was reported for the alleles involved.

For the CSN3 gene, no allele was more frequent across 
the individuals of the population over the rest of the 
alleles for any SNP studied (Table 4). Dimension 1 of 
NLCCA for this gene reported that SNP39, 41, 42, 46, 
and 47 were the most representative for explaining in-
tergroup variability and the ones to most reinforce the 
epistatic interaction within dimension 1 (multiple fit > 
0.1), with the genotypes determined by them account-
ing for the following: C/T, A/T, .-/AATC, A/T, and 
G/C. When the relative frequencies for these alleles are 
sorted from highest to lowest T = C and AATC = .-.

The analysis of dominance relationships between 
alleles reported that T > C for SNP39 presented a 
significant relationship (P < 0.01) with lactose content. 
Simultaneously, a dominance relationship of T > A for 
SNP41 presented a significant relationship with lactose 
content. Furthermore, allele A reported a significant 
dominance effect over T for SNP46 on fat content, and 
for SNP47, G was dominant over C for lactose content.

For dimension 2 (the CSN3 gene) SNP46 and 47 
resulted in the most representative SNP to explain 
intergroup variability and to reinforce the epistatic 
interaction within dimension 2 (multiple fit > 0.1), 
with equal relative frequencies for alleles A/T and 
G/C. Dominance ratios suggested a relationship of 
dominance of A over T alleles for SNP46, reporting a 
significant relationship with fat content. However, G 
> C allele for SNP47 was significantly correlated with 
lactose content.

DISCUSSION

Additive genetic variance has progressively evolved 
for around 15 yr across approximately 4 generations 
in Murciano-Granadina goats. This is reflected in the 
values for selection response since 2005 (Martínez et 
al., 2010). Contextually, a progressive counteraction of 
the repercussion of the Bulmer effect (Bulmer, 1971) 
may have occurred, as, after several generations of se-
lection, the additive genetic variance and the rate of 
response to selection may become progressively asymp-
totic (Wray and Hill, 1989), which in turn lays a base 
that supports the validity of the conclusions drawn 
from this study. In this context, the results obtained 
for the eigenvalues of the 2 dimensions identified were 
high enough to be considered appropriate for issuing 
valid conclusions after the NLCCA, as suggested by 
other authors (Tarkhnishvili, 2014). The first dimen-
sion comprises 15 SNP located in the promoter region 
of all casein genes (Table 5 and Supplemental Table 
S1, https: / / doi .org/ 10 .3168/ jds .2019 -17833). The fact 
that epistatic interactions involve promoter regions, 
may, for instance, be relevant given the implications of 
the intragenic haplotypic combination of variants in the 
regulatory and coding regions of genes.

The expression of casein genes is known to be dif-
ferentially hormonally regulated through receptor bind-
ing sites occurring along the 5′ flanking region (DNA 
region adjacent to the 5′ end of the gene; Martin et 
al., 2002). However, mutations in these regulatory re-
gions may also have long-lasting effects in casein gene 
regulation at a transcriptional level (Szymanowska et 
al., 2004), either individually or as inter- or intragenic 
haplotypes. For instance, mutations in the promoter 
region of CSN1S1 have been reported to influence the 
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efficiency of protein coding derived from changes in 
the binding affinity toward their nuclear transcription 
factors. Hence, these mutations can be considered func-
tional candidates underlying protein content expression. 
These same regions have also been suggested to be as-
sociated with SCC in some bovine breeds (Prinzenberg 
et al., 2003, 2005; Sanders et al., 2006).

The final level of expression of any protein depends 
on the stages of the process of genic expression, in 
which many regulatory mechanisms are involved, in a 
signaling network that reflects cells’ responses to spe-
cific conditions (Matoulkova et al., 2012). For example, 
despite the 3′ untranslated region where SNP18 from 
the CSN2S2 gene is located being a noncoding region, 
a significant association with milk yield, fat, and pro-
tein content has been reported by our results and in 
literature (Weikard et al., 2005; Khatib et al., 2007). 
This may suggest that certain mutations may alter the 
expression of proteins in such a way that productive 
performance is modified, with independence of the cod-
ing nature of the mutated regions, given their implica-
tion for protein transcription.

The 4 haplotype blocks found to be in high disequi-
librium (D′ ≈ 0.80) may be coinherited roughly 80% of 
the time. Hence, potential historical recombinant access 
points or recurrent mutations (D′ closer to 0) appear 
to separate CSN1S2 and CSN1S1, and CSN1S1 and 
CSN2, and one seems to be present in CSN3, as shown 
in Figure 1. Nilsen et al. (2009) previously reported 
evidence for a recombination access point between 
CSN1S2 and CSN3, supporting our findings.

The variability in LD between the SNP (r2 ranging 
between 1 and almost 0), particularly between those 
only tens of bases apart, is worth considering. Mecha-
nisms such as gene conversion have been proposed to 
explain the high variability between very closely spaced 
SNP (Frisse et al., 2001). We found that the level of 
LD for pairs of markers within each casein locus was 
higher than for pairs of markers in different loci, even 
if a correction was made for declining LD with increas-
ing distance between a pair of markers. This finding 
supports the observation of reduced recombination in 
genic regions compared with nongenic regions (Myers 
et al., 2005).

We found that LD was not evenly spread across the 
chromosome segment containing the caseins: high levels 
of LD were observed at either end of the segment, with 
low levels of LD in the middle of the segment. Levels of 
LD for marker pairs spanning CSN2 to CSN1S2 were 
significantly lower than those for marker pairs located 
within the 2 segments, even when a correction was 
made for declining LD with distance. Preferential re-
combination in the region of the chromosome segment 
containing the caseins would ensure the continuous 

generation of casein gene alleles new combinations. A 
previous study reported recombination generating new 
alleles in caprine caseins (Bevilacqua et al., 2002), al-
though the proposed site of recombination was within 
the CSNS1 locus.

Hayes et al. (2006) found evidence for a site of pref-
erential recombination between CSN2 and CSN1S2 in 
goats. Despite the fact that the 4 genes in the casein 
complex are expressed in a highly coordinated man-
ner, κ-casein has not been reported to be evolutionarily 
related to the rest of caseins (αS1, β, and αS2). Calcium-
sensitive caseins (αS1, β, and αS2) originated from a 
common ancestral gene after inter- and intragenic 
duplications (Groenen et al., 1993) and share common 
regulatory effects, whereas κ-casein has been suggested 
to be related to fibrinogens, based on aminoacidic se-
quence similarities.

The results found for the CSN1S2 locus SNP1 are 
consistent with those reported by Baltrėnaitė et al. 
(2013), who suggested the dominant character of allele 
A for milk yield. For CSN1S2 (Tables 3 and 5), SNP 4, 
5, 14, and 15, alleles G, C, and T were dominant over 
alleles A, T, and C for the lactose content expressed 
as a percentage, respectively. Nonetheless, we have not 
found references alluding to the interallelic relationship 
for lactose content in literature.

Genetic variants A, B, and C of αS2-casein were 
found by Recio et al. (1997). Ham et al. (2010) found a 
slightly higher mean for αS2-casein content in goat milk 
with SCC above 1,500,000 cells/mL (7.58 ± 2.02 g/100 
g of milk) for milk presenting SCC less than 1,500,000 
cells/mL (7.01 ± 1.84 g/100 milk g). This could support 
our results, given the codominance relationship found 
between the alleles involved in the SNP for CSN1S2 in 
dimension 1, supporting the fact that even when Ham 
et al. (2010) found significant differences (P < 0.01), 
these differences were not large.

The results found for SNP13 (Tables 3 and 5) are 
consistent with those reported by Baltrėnaitė et al. 
(2013), who reported the significant dominant charac-
ter of allele A over B for protein percentage (P < 0.01). 
For CSN1S2 SNP18, allele T presented a significant 
dominant character over C for percentage of lactose 
content (P < 0.01). Again, no reference in literature 
has been found alluding to the interallelic relationship 
with lactose content. Genetic variants A, B, and C of 
αS1-casein were found by Recio et al. (1997).

In the context of our results, Bersaglieri et al. (2004) 
suggested that chromosomes carrying the lactase per-
sistence–associated allele −13910T share a very long 
haplotype around this allele in humans. The presence 
of this haplotype has suggested the possibility that a 
variant located somewhere in this large region, other 
than −13910C→T, could cause lactase persistence in 
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humans (Poulter et al., 2003). This hypothesis has 
raised the interest of some authors, based on the strik-
ing geographic correlation of lactase persistence with 
dairy selection. Such a hypothesis was strongly rein-
forced by Beja-Pereira et al. (2003), who would also 
describe evidence of selection on cow milk protein genes 
in regions of Europe with a high prevalence of lactase 
persistence.

Associations between CSN1S1 exon variants and 
αS1-casein traits, such as those we found, were previ-
ously observed in the same breed (Cardak et al., 2003). 
Cardak et al. (2003) attributed the basis for this rela-
tionship to the very close linkage of these loci with the 
AP-1 variant, which therefore can, in accordance with 
suggestions by Koczan et al. (1993) and Ehrmann et al. 
(1997), imply the presence of “intragenic haplotypes.” 
The same assumption can be made with regard to the 
effects of specific milk proteins on the quality of milk, 
such as the implication of CSN1S1 exon variants in 
superior protein and casein contents (Buchberger and 
Dovč, 2000). However, for cheese-making ability traits, 
polymorphisms affecting protein characteristics might 
have direct effects with independence from promoter 
variants. For instance, the difference in casein content 
between a homozygous animal for “high” alleles, such 
as A/A, and a homozygous animal for “low” alleles, 
such as F/F, was 6 g/L as reported by Grosclaude et 
al. (1994). Moreover, the efficient transport of caseins 
seems to be dependent on CSN1S1; thus animals with 
“low” alleles (F, G) would have a reduced solids con-
tent in milk (Chanat et al., 1999). In general goat milk 
with high levels of CSN1S1 has been found to present 
a better composition, not only regarding protein con-
tent but also fat, total solids, and phosphorous, with a 
lower pH than types of milk with low levels of CSN1S1 
(Grosclaude et al., 1987; Barbieri, 1995). These results 
match the conclusions by other authors, such as Van 
Eenennaam and Medrano (1991), who found high milk 
yield as well as protein content associated with the 
CSN1S1 CC genotype compared with the BB and BC 
genotypes. Similarly, Dagnachew et al. (2011) reported 
the fact that GA goats tend to produce less milk but 
of a higher quality, regarding protein and fat content, 
than DD goats. No information has been found in the 
literature for the T allele.

Fat content is a highly environmentally influenced 
parameter. This large environmental variability might 
overlay possible small influences of the αS1-casein geno-
type, as suggested by Sanchez et al. (1998), which may 
account for the lack of significant associations found 
for fat content and CSN1S1 SNP. Curd yield capac-
ity and its significant association with the αS1-casein 
genotype may be an indirect indicator of the significant 

association with protein content. Curd yield has been 
reported to be highly correlated (r = 0.68) with cheese 
yield. However, no effect of the αS1-casein genotype on 
cheese yield has been reported. According to Sanchez 
et al. (1998), this finding could be a consequence of the 
negative effect of the high levels of SCC on the clotting 
process, which may indirectly support the evidence for 
a significant association between CSN1S1 haplotypes 
and SCC.

The CSN2 gene encodes for β-casein, which is the 
most abundant protein in milk and is synthesized and 
secreted by mammary epithelial cells (Tomasinsig et 
al., 2010). In these regards, the C allele has been re-
ported as a predominant one for some caprine breeds 
(Chessa et al., 2005). This agrees with our results and 
those reported by Baltrėnaitė et al. (2013), who did 
not find significant differences in milk yield and protein 
and fat content when the different possible allelic com-
binations for β-casein were compared. From all caseins, 
κ-casein is the only to be post-translationally glyco-
sylated through O-linked glycosylation of threonine 
residues (Ercili-Cura et al., 2015). Ng-Kwai-Hang et 
al. (1984) reported that bovine milk from κ-casein BB 
contained 13% more protein than the AB intermediate 
phenotype. Data analysis performed by Caravaca et al. 
(2009) using a linear mixed model for repeated obser-
vations revealed no interaction between the CSN1S1 
and CSN3 genotypes, which compares to our results for 
the CSN3 gene, for which no SNP explained intergroup 
variance (component loadings < |0.5|).

Regarding the effect of the CSN3 locus, AB and BB 
genotypes were significantly associated with higher to-
tal casein and protein content levels compared with the 
CSN3 AA genotype, which could be supported by the 
higher median found for certain genotype combinations, 
including alleles G, T, C, and A (Table 5 and Supplemen-
tal Table S3, https: / / doi .org/ 10 .3168/ jds .2019 -17833), 
which would also be reported for the same genotypes 
and dry matter. No reference to the significant associa-
tion of CSN3 with fat or lactose content has previously 
been reported in the literature. However, the effects of 
lactose found in our study and reported by Noeparvar 
and Morison (2018) may indicate that κ-casein might 
have a role in the stabilization of calcium phosphate 
in milk, which might support the nearly universal ac-
ceptance that this casein is the principal stabilizing 
factor in the casein micelle (Linderstrøm-Lang, 1929). 
Still, as our results suggest, the recombination access 
points found in the CSN3 locus may be the basis for the 
lack of intergroup explanatory potential of the variance 
of κ-casein, which may suggest a lack of interaction 
between this gene and the rest of the genes comprising 
the casein complex.
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CONCLUSIONS

We conclude that milk performance and quality may 
depend not only on the specific casein gene background 
of individuals, nor on the relationships of additivity and 
dominance that may exist, but may also be strongly 
conditioned by the relationships established across and 
within the genes that regulate the expression of caseins. 
In this context, NLCCA may maximize the outcomes 
derived from the study of epistasis, which may play a 
pivotal part when our aim is to optimize selective prac-
tices for economically important dairy traits (Pizarro 
et al., 2020).

ACKNOWLEDGMENTS

This work would not have been possible without the 
support and assistance of the National Association of 
Breeders of Murciano-Granadina Goat Breed, Fuente 
Vaqueros (Spain), and the PAIDI AGR 218 research 
group (University of Córdoba, Córdoba, Spain). The 
authors have not stated any conflicts of interest. 

REFERENCES

Baltrėnaitė, L., K. Liucvaikienė, N. Makštutienė, K. Morkūnienė, L. 
Šalomskienė, I. Miceikienė, R. Stankevičius, and S. Kerzienė. 2013. 
Ožkų pieno baltymų genų įvairovės poveikis pieninėms savybėms 
(The influence of goat milk protein gene polymorphism to milk 
traits). Vet. Med. Zoot. 62:8–13.

Barbieri, M. 1995. Polymorphisme de la caseine alpha-S1. Effets des 
genotypes sur des performances zootechiniques et utilisation en 
selection caprine. [Alpha-S1 casein polymorphism. Effects of geno-
types on zootechnic performances and use in caprine selection.] 
PhD thesis, Institut National Agronomique Paris-Grignon, Paris, 
France.

Beja-Pereira, A., G. Luikart, P. R. England, D. G. Bradley, O. C. 
Jann, G. Bertorelle, A. T. Chamberlain, T. P. Nunes, S. Meto-
diev, N. Ferrand, and G. Erhardt. 2003. Gene-culture coevolution 
between cattle milk protein genes and human lactase genes. Nat. 
Genet. 35:311–313. https: / / doi .org/ 10 .1038/ ng1263.

Bersaglieri, T., P. C. Sabeti, N. Patterson, T. Vanderploeg, S. F. Schaff-
ner, J. A. Drake, M. Rhodes, D. E. Reich, and J. N. Hirschhorn. 
2004. Genetic signatures of strong recent positive selection at the 
lactase gene. Am. J. Hum. Genet. 74:1111–1120. https: / / doi .org/ 
10 .1086/ 421051.

Bevilacqua, C., P. Ferranti, G. Garro, C. Veltri, R. Lagonigro, C. 
Leroux, E. Pietrola, F. Addeo, F. Pilla, L. Chianese, and P. Mar-
tin. 2002. Interallelic recombination is probably responsible for the 
occurrence of a new αS1-casein variant found in the goat species. 
Eur. J. Biochem. 269:1293–1303. https: / / doi .org/ 10 .1046/ j .1432 
-1033 .2002 .02777 .x.

Buchberger, J., and P. Dovč. 2000. Lactoprotein genetic variants in 
cattle and cheese making ability. Food Technol. Biotechnol. 38:91–
98.

Bulmer, M. 1971. The effect of selection on genetic variability. Am. 
Nat. 105:201–211. https: / / doi .org/ 10 .1086/ 282718.

Caravaca, F., J. Carrizosa, B. Urrutia, F. Baena, J. Jordana, M. 
Amills, B. Badaoui, A. Sánchez, A. Angiolillo, and J. M. Serra-
dilla. 2009. Short communication: Effect of αS1-casein (CSN1S1) 
and κ-casein (CSN3) genotypes on milk composition in Murciano-
Granadina goats. J. Dairy Sci. 92:2960–2964. https: / / doi .org/ 10 
.3168/ jds .2008 -1510.

Cardak, A., A. Yetismeyen, and H. Bruckner. 2003. Quantitative com-
parison of camel, goat and cow milk fatty acids. Milchwissenschaft 
58:34–36.

Chanat, E., P. Martin, and M. Ollivier-Bousquet. 1999. Alpha(S1)-
casein is required for the efficient transport of beta- and kappa-
casein from the endoplasmic reticulum to the Golgi apparatus of 
mammary epithelial cells. J. Cell Sci. 112:3399–3412.

Chessa, S., E. Budelli, F. Chiatti, A. Cito, P. Bolla, and A. Caroli. 
2005. Predominance of β-casein (CSN2) C allele in goat breeds 
reared in Italy. J. Dairy Sci. 88:1878–1881. https: / / doi .org/ 10 
.3168/ jds .S0022 -0302(05)72863 -0.

Cockerham, C. C. 1954. An extension of the concept of partition-
ing hereditary variance for analysis of covariances among relatives 
when epistasis is present. Genetics 39:859.

Cordell, H. J. 2002. Epistasis: What it means, what it doesn’t mean, 
and statistical methods to detect it in humans. Hum. Mol. Genet. 
11:2463–2468. https: / / doi .org/ 10 .1093/ hmg/ 11 .20 .2463.

Dagnachew, B. S., G. Thaller, S. Lien, and T. Ådnøy. 2011. Casein 
SNP in Norwegian goats: Additive and dominance effects on milk 
composition and quality. Genet. Sel. Evol. 43:31. https: / / doi .org/ 
10 .1186/ 1297 -9686 -43 -31.

Dania, A., G. Vagenas, and V. Tyrovola. 2013. Typological classifica-
tions of Greek dance forms according to the type of choros “sta 
tria”: A non-parametric and non-linear canonical correlation anal-
ysis of 122 Greek folk dances. Acta Ethnogr. Hung. 58:229–254. 
https: / / doi .org/ 10 .1556/ AEthn .58 .2013 .1 .16.

Delgado, J. V., V. Landi, C. J. Barba, J. Fernández, M. M. Gómez, 
M. E. Camacho, M. A. Martínez, F. J. Navas, and J. M. León. 
2017. Murciano-Granadina goat: A Spanish local breed ready for 
the challenges of the twenty-first century. Pages 205–219 in Sus-
tainable Goat Production in Adverse Environments: Volume II. J. 
Simões and C. Gutiérrez, ed. Springer, Cham, Switzerland.

Delgado, J. V., J. M. León, J. L. Quiroz, and M. I. Lozano. 2005. 
Esquema de selección de sementales caprinos de aptitud lechera de 
raza Murciano-Granadina. Feagas 27:109–113.

Ehrmann, S., H. Bartenschlager, and H. Geldermann. 1997. Quantifi-
cation of gene effects on single milk proteins in selected groups of 
dairy cows. J. Anim. Breed. Genet. 114:121–132. https: / / doi .org/ 
10 .1111/ j .1439 -0388 .1997 .tb00499 .x.

Ercili-Cura, D., T. Huppertz, and A. Kelly. 2015. Enzymatic modifi-
cation of dairy product texture. Pages 71–97 in Modifying Food 
Texture: Novel Ingredients and Processing Techniques, Volume 
I. J. Chen and A. Rosenthal, ed. Woodhead Publishing/Elsevier, 
Sawston, UK.

Fisher, R. A. 1919. XV. The correlation between relatives on the 
supposition of Mendelian inheritance. Earth Env. Sci. T. R. So. 
52:399–433. https: / / doi .org/ 10 .1017/ S0080456800012163.

Frisse, L., R. Hudson, A. Bartoszewicz, J. Wall, J. Donfack, and A. 
Di Rienzo. 2001. Gene conversion and different population histo-
ries may explain the contrast between polymorphism and linkage 
disequilibrium levels. Am. J. Hum. Genet. 69:831–843. https: / / doi 
.org/ 10 .1086/ 323612.

Gabriel, S. B., S. F. Schaffner, H. Nguyen, J. M. Moore, J. Roy, B. 
Blumenstiel, J. Higgins, M. DeFelice, A. Lochner, and M. Faggart. 
2002. The structure of haplotype blocks in the human genome. 
Science 296:2225–2229. https: / / doi .org/ 10 .1126/ science .1069424.

Groenen, M. A., R. J. Dijkhof, A. J. Verstege, and J. J. Van der 
Poel. 1993. The complete sequence of the gene encoding bo-
vine α2-casein. Gene 123:187–193. https: / / doi .org/ 10 .1016/ 0378 
-1119(93)90123 -K.

Grosclaude, F., M.-F. Mahé, G. Brignon, L. Di Stasio, and R. Jeunet. 
1987. A Mendelian polymorphism underlying quantitative varia-
tions of goat αS1-casein. Genet. Sel. Evol. 19:399. https: / / doi .org/ 
10 .1186/ 1297 -9686 -19 -4 -399.

Grosclaude, F., G. Ricordeau, P. Martin, F. Remeuf, L. Vassal, and 
J. Bouillon. 1994. Du gène au fromage: le polymorphisme de la 
caséine αS1 caprine, ses effets, son évolution. INRA Prod. Anim. 
7:3–19.

Ham, J. S., S. G. Lee, S. G. Jeong, M. H. Oh, D. H. Kim, and Y. W. 
Park. 2010. Characteristics of Korean-Saanen goat milk caseins 
and somatic cell counts in comparison with Holstein cow milk 

Pizarro et al.: CASEIN COMPLEX EPISTASIS ON MILK YIELD AND CONTENT

https://doi.org/10.1038/ng1263
https://doi.org/10.1086/421051
https://doi.org/10.1086/421051
https://doi.org/10.1046/j.1432-1033.2002.02777.x
https://doi.org/10.1046/j.1432-1033.2002.02777.x
https://doi.org/10.1086/282718
https://doi.org/10.3168/jds.2008-1510
https://doi.org/10.3168/jds.2008-1510
https://doi.org/10.3168/jds.S0022-0302(05)72863-0
https://doi.org/10.3168/jds.S0022-0302(05)72863-0
https://doi.org/10.1093/hmg/11.20.2463
https://doi.org/10.1186/1297-9686-43-31
https://doi.org/10.1186/1297-9686-43-31
https://doi.org/10.1556/AEthn.58.2013.1.16
https://doi.org/10.1111/j.1439-0388.1997.tb00499.x
https://doi.org/10.1111/j.1439-0388.1997.tb00499.x
https://doi.org/10.1017/S0080456800012163
https://doi.org/10.1086/323612
https://doi.org/10.1086/323612
https://doi.org/10.1126/science.1069424
https://doi.org/10.1016/0378-1119(93)90123-K
https://doi.org/10.1016/0378-1119(93)90123-K
https://doi.org/10.1186/1297-9686-19-4-399
https://doi.org/10.1186/1297-9686-19-4-399


Journal of Dairy Science Vol. 103 No. 9, 2020

8290

counterparts. Small Rumin. Res. 93:202–205. https: / / doi .org/ 10 
.1016/ j .smallrumres .2010 .05 .006.

Hao, K., C. Li, C. Rosenow, and W. H. Wong. 2004. Detect and ad-
just for population stratification in population-based association 
study using genomic control markers: An application of Affyme-
trix Genechip Human Mapping 10K array. Eur. J. Hum. Genet. 
12:1001–1006. https: / / doi .org/ 10 .1038/ sj .ejhg .5201273.

Hayes, B., N. Hagesæther, T. Ådnøy, G. Pellerud, P. R. Berg, and 
S. Lien. 2006. Effects on production traits of haplotypes among 
casein genes in Norwegian goats and evidence for a site of pref-
erential recombination. Genetics 174:455–464. https: / / doi .org/ 10 
.1534/ genetics .106 .058966.

Horne, B. D., and N. J. Camp. 2004. Principal component analysis 
for selection of optimal SNP-sets that capture intragenic genetic 
variation. Genet. Epidemiol. 26:11–21. https: / / doi .org/ 10 .1002/ 
gepi .10292.

Hsieh, W. W. 2000. Nonlinear canonical correlation analysis by neural 
networks. Neural Netw. 13:1095–1105. https: / / doi .org/ 10 .1016/ 
S0893 -6080(00)00067 -8.

Hubbard, T., D. Barker, E. Birney, G. Cameron, Y. Chen, L. Clark, 
T. Cox, J. Cuff, V. Curwen, and T. Down. 2002. The Ensembl 
genome database project. Nucleic Acids Res. 30:38–41. https: / / doi 
.org/ 10 .1093/ nar/ 30 .1 .38.

Kempthorne, O. 1954. The correlation between relatives in a random 
mating population. Proc. R. Soc. Lond. B Biol. Sci. 143:103–113. 
https: / / doi .org/ 10 .1098/ rspb .1954 .0056.

Khatib, H., I. Zaitoun, J. Wiebelhaus-Finger, Y. Chang, and G. Rosa. 
2007. The association of bovine PPARGC1A and OPN genes with 
milk composition in two independent Holstein cattle populations. 
J. Dairy Sci. 90:2966–2970. https: / / doi .org/ 10 .3168/ jds .2006 -812.

Koczan, D., G. Hobom, and H. M. Seyfert. 1993. Characterization of 
the bovine αS1-casein gene C-allele, based on a Mae III polymor-
phism. Anim. Genet. 24:74. https: / / doi .org/ 10 .1111/ j .1365 -2052 
.1993 .tb00935 .x.

Kruger, U., S. K. Sharma, and G. W. Irwin. 2004. Improved nonlin-
ear canonical correlation analysis using genetic strategies. Neural 
Netw. 8:5–6.

Linderstrøm-Lang, K. 1929. Studies on Casein III. On the fraction-
ation of casein. C. R. Lab. Carlsberg 17:1–116.

Liu, Z., and X. Lin. 2018. Multiple phenotype association tests using 
summary statistics in genome-wide association studies. Biometrics 
74:165–175. https: / / doi .org/ 10 .1111/ biom .12735.

Mackay, T. F., and J. H. Moore. 2014. Why epistasis is important 
for tackling complex human disease genetics. Genome Med. 6:124. 
https: / / doi .org/ 10 .1186/ gm561.

Martin, P., I. Palhière, C. Maroteau, P. Bardou, K. Canale-Tabet, 
J. Sarry, F. Woloszyn, J. Bertrand-Michel, I. Racke, H. Besir, R. 
Rupp, and G. Tosser-Klopp. 2017. A genome scan for milk produc-
tion traits in dairy goats reveals two new mutations in Dgat1 re-
ducing milk fat content. Sci. Rep. 7:1872. https: / / doi .org/ 10 .1038/ 
s41598 -017 -02052 -0.

Martin, P., M. Szymanowska, L. Zwierzchowski, and C. Leroux. 2002. 
The impact of genetic polymorphisms on the protein composition 
of ruminant milks. Reprod. Nutr. Dev. 42:433–459. https: / / doi 
.org/ 10 .1051/ rnd: 2002036.

Martínez, A., J. Vega-Pla, J. Leon, M. Camacho, J. Delgado, and M. 
Ribeiro. 2010. Is the Murciano-Granadina a single goat breed? 
A molecular genetics approach. Arq. Bras. Med. Vet. Zootec. 
62:1191–1198. https: / / doi .org/ 10 .1590/ S0102 -09352010000500023.

Matoulkova, E., E. Michalova, B. Vojtesek, and R. Hrstka. 2012. The 
role of the 3′untranslated region in post-transcriptional regulation 
of protein expression in mammalian cells. RNA Biol. 9:563–576. 
https: / / doi .org/ 10 .4161/ rna .20231.

Meulman, J. J., and W. J. Heiser. 2012. IBM SPSS Categories 21. 
University of Sussex, Brighton, UK.

Miller, S. A., D. D. Dykes, and H. F. Polesky. 1988. A simple salting 
out procedure for extracting DNA from human nucleated cells. 
Nucleic Acids Res. 16:1215. https: / / doi .org/ 10 .1093/ nar/ 16 .3 
.1215.

Myers, S., L. Bottolo, C. Freeman, G. McVean, and P. Donnelly. 2005. 
A fine-scale map of recombination rates and hotspots across the 

human genome. Science 310:321–324. https: / / doi .org/ 10 .1126/ 
science .1117196.

Ng-Kwai-Hang, K. F., J. F. Hayes, J. E. Moxley, and H. G. Mo-
nardes. 1984. Association of genetic variants of casein and milk 
serum proteins with milk, fat, and protein production by dairy 
cattle. J. Dairy Sci. 67:835–840. https: / / doi .org/ 10 .3168/ jds .S0022 
-0302(84)81374 -0.

Nilsen, H., H. G. Olsen, B. Hayes, E. Sehested, M. Svendsen, T. Nome, 
T. Meuwissen, and S. Lien. 2009. Casein haplotypes and their 
association with milk production traits in Norwegian Red cattle. 
Genet. Sel. Evol. 41:24. https: / / doi .org/ 10 .1186/ 1297 -9686 -41 -24.

Noeparvar, P., and K. R. Morison. 2018. The effects of lactose on 
calcium phosphate precipitation. Pages 206–214 in Chemeca 2018, 
Queenstown, New Zealand.

Novembre, J., T. Johnson, K. Bryc, Z. Kutalik, A. R. Boyko, A. Auton, 
A. Indap, K. S. King, S. Bergmann, M. R. Nelson, M. Stephens, 
and C. D. Bustamante. 2008. Genes mirror geography within Eu-
rope. Nature 456:98–101. https: / / doi .org/ 10 .1038/ nature07331.

Phillips, P. C. 2008. Epistasis—The essential role of gene interactions 
in the structure and evolution of genetic systems. Nat. Rev. Genet. 
9:855–867. https: / / doi .org/ 10 .1038/ nrg2452.

Pizarro, M. G., V. Landi, F. J. Navas, J. M. León, and J. V. Delgado. 
2019a. Non-parametric analysis of the effects of αS1-casein geno-
type and parturition nongenetic factors on milk yield and compo-
sition in Murciano-Granadina goats. Ital. J. Anim. Sci. 18:1021–
1034. https: / / doi .org/ 10 .1080/ 1828051X .2019 .1611388.

Pizarro, M. G., V. Landi, F. J. Navas, J. M. León, A. M. Martínez, 
J. Á. Fernández, and J. V. Delgado. 2019b. Does the acknowl-
edgement of αS1-casein genotype affect the estimation of genetic 
parameters and prediction of breeding values for milk yield and 
composition quality-related traits in Murciano-Granadina? Ani-
mals (Basel) 9:679. https: / / doi .org/ 10 .3390/ ani9090679.

Pizarro, M. G., V. Landi, F. J. Navas, J. J. León, A. M. Martínez, J. 
Á. Fernández, and J. V. Delgado. 2019c. Non-parametric associa-
tion analysis of additive and dominance effects of casein complex 
SNPs on milk content and quality in Murciano-Granadina goats. 
J. Anim. Breed. Genet. In press.

Pizarro, M. G., V. Landi, F. J. Navas, J. J. León, A. M. Martínez, J. 
Á. Fernández, and J. V. Delgado. 2020. Integrating casein complex 
SNPs additive, dominance and epistatic effects on genetic param-
eters and breeding values estimation for Murciano-Granadina goat 
milk yield and components. Genes (Basel) 11:309. https: / / doi .org/ 
10 .3390/ genes11030309.

Poulter, M., E. Hollox, C. Harvey, C. Mulcare, K. Peuhkuri, K. Ka-
jander, M. Sarner, R. Korpela, and D. Swallow. 2003. The causal 
element for the lactase persistence/non-persistence polymorphism 
is located in a 1 Mb region of linkage disequilibrium in Europeans. 
Ann. Hum. Genet. 67:298–311. https: / / doi .org/ 10 .1046/ j .1469 
-1809 .2003 .00048 .x.

Price, A. L., N. J. Patterson, R. M. Plenge, M. E. Weinblatt, N. A. 
Shadick, and D. Reich. 2006. Principal components analysis cor-
rects for stratification in genome-wide association studies. Nat. 
Genet. 38:904–909. https: / / doi .org/ 10 .1038/ ng1847.

Prinzenberg, E.-M., H. Brandt, J. Bennewitz, E. Kalm, and G. Er-
hardt. 2005. Allele frequencies for SNPs in the αS1-casein gene 
(CSN1S1) 5′ flanking region in European cattle and associa-
tion with economic traits in German Holstein. Livest. Prod. Sci. 
98:155–160. https: / / doi .org/ 10 .1016/ j .livprodsci .2005 .10 .015.

Prinzenberg, E.-M., C. Weimann, H. Brandt, J. Bennewitz, E. Kalm, 
M. Schwerin, and G. Erhardt. 2003. Polymorphism of the bovine 
CSN1S1 promoter: Linkage mapping, intragenic haplotypes, and 
effects on milk production traits. J. Dairy Sci. 86:2696–2705. https: 
/ / doi .org/ 10 .3168/ jds .S0022 -0302(03)73865 -X.

Purcell, S., B. Neale, K. Todd-Brown, L. Thomas, M. A. Ferreira, 
D. Bender, J. Maller, P. Sklar, P. I. De Bakker, M. J. Daly, and 
P. C. Sham. 2007. PLINK: A tool set for whole-genome associa-
tion and population-based linkage analyses. . Am. J. Hum. Genet. 
81:559–575. https: / / doi .org/ 10 .1086/ 519795.

Recio, I., M. L. Pérez-Rodríguez, L. Amigo, and M. Ramos. 1997. 
Study of the polymorphism of caprine milk caseins by capillary 

Pizarro et al.: CASEIN COMPLEX EPISTASIS ON MILK YIELD AND CONTENT

https://doi.org/10.1016/j.smallrumres.2010.05.006
https://doi.org/10.1016/j.smallrumres.2010.05.006
https://doi.org/10.1038/sj.ejhg.5201273
https://doi.org/10.1534/genetics.106.058966
https://doi.org/10.1534/genetics.106.058966
https://doi.org/10.1002/gepi.10292
https://doi.org/10.1002/gepi.10292
https://doi.org/10.1016/S0893-6080(00)00067-8
https://doi.org/10.1016/S0893-6080(00)00067-8
https://doi.org/10.1093/nar/30.1.38
https://doi.org/10.1093/nar/30.1.38
https://doi.org/10.1098/rspb.1954.0056
https://doi.org/10.3168/jds.2006-812
https://doi.org/10.1111/j.1365-2052.1993.tb00935.x
https://doi.org/10.1111/j.1365-2052.1993.tb00935.x
https://doi.org/10.1111/biom.12735
https://doi.org/10.1186/gm561
https://doi.org/10.1038/s41598-017-02052-0
https://doi.org/10.1038/s41598-017-02052-0
https://doi.org/10.1051/rnd:2002036
https://doi.org/10.1051/rnd:2002036
https://doi.org/10.1590/S0102-09352010000500023
https://doi.org/10.4161/rna.20231
https://doi.org/10.1093/nar/16.3.1215
https://doi.org/10.1093/nar/16.3.1215
https://doi.org/10.1126/science.1117196
https://doi.org/10.1126/science.1117196
https://doi.org/10.3168/jds.S0022-0302(84)81374-0
https://doi.org/10.3168/jds.S0022-0302(84)81374-0
https://doi.org/10.1186/1297-9686-41-24
https://doi.org/10.1038/nature07331
https://doi.org/10.1038/nrg2452
https://doi.org/10.1080/1828051X.2019.1611388
https://doi.org/10.3390/ani9090679
https://doi.org/10.3390/genes11030309
https://doi.org/10.3390/genes11030309
https://doi.org/10.1046/j.1469-1809.2003.00048.x
https://doi.org/10.1046/j.1469-1809.2003.00048.x
https://doi.org/10.1038/ng1847
https://doi.org/10.1016/j.livprodsci.2005.10.015
https://doi.org/10.3168/jds.S0022-0302(03)73865-X
https://doi.org/10.3168/jds.S0022-0302(03)73865-X
https://doi.org/10.1086/519795


8291

Journal of Dairy Science Vol. 103 No. 9, 2020

electrophoresis. J. Dairy Res. 64:515–523. https: / / doi .org/ 10 
.1017/ S0022029997002343.

Rentería, M. E., A. Cortes, and S. E. Medland. 2013. Using PLINK 
for genome-wide association studies (GWAS) and data analysis. 
Pages 193–213 in Genome-Wide Association Studies and Genomic 
Prediction. C. Gondro, J. van der Werf, and B. Hayes, ed. Humana 
Press, Totowa, NJ.

Sanchez, A., C. Angulo, M. Amills, J. Ares, and J. Serradilla. 1998. Ef-
fect of αS1-casein genotype on yield, composition and cheese mak-
ing properties of milk in the Malagueña breed of goats. Page 242 in 
Proc. 6th World Congress on Genetics Applied to Livestock Pro-
duction. Animal Genetics and Breeding Unit, University of New 
England, Biddeford, ME.

Sanders, K., J. Bennewitz, N. Reinsch, G. Thaller, E.-M. Prinzenberg, 
C. Kühn, and E. Kalm. 2006. Characterization of the DGAT1 
mutations and the CSN1S1 promoter in the German Angeln dairy 
cattle population. J. Dairy Sci. 89:3164–3174. https: / / doi .org/ 10 
.3168/ jds .S0022 -0302(06)72590 -5.

Song, Y., P. J. Schreier, and N. J. Roseveare. 2015. Determining the 
number of correlated signals between two data sets using PCA-
CCA when sample support is extremely small. Pages 3452–3456 
in Proc. IEEE International Conference on Acoustics, Speech and 
Signal Processing (ICASSP), South Brisbane, Queensland, Aus-
tralia.

Spanish Ministry of Agriculture. 2005. Real Decreto 368/2005, de 8 de 
abril, por el que se regula el control oficial del rendimiento lechero 
para la evaluación genética en las especies bovina, ovina y caprina. 
[Royal Decree 368/2005, of 8th April, which regulates the official 
control of the milk yield for the genetic evaluation in the bovine, 
ovine and caprine species]. BOE, núm. 97, de 23 de abril de 2005. 
BOE-A-2005-6564. Ministerio de Agricultura, Pesca y Aliment-
ación, Madrid, Spain.

Szymanowska, M., T. Malewski, and L. Zwierzchowski. 2004. Tran-
scription factor binding to variable nucleotide sequences in 

5′-flanking regions of bovine casein genes. Int. Dairy J. 14:103–115. 
https: / / doi .org/ 10 .1016/ S0958 -6946(03)00153 -5.

Tarkhnishvili, D. 2014. Historical biogeography of the Caucasus. Nova 
Science Publishers, New York, NY.

Tomasinsig, L., G. De Conti, B. Skerlavaj, R. Piccinini, M. Mazzilli, F. 
D’Este, A. Tossi, and M. Zanetti. 2010. Broad-spectrum activity 
against bacterial mastitis pathogens and activation of mammary 
epithelial cells support a protective role of neutrophil cathelicidins 
in bovine mastitis. Infect. Immun. 78:1781–1788. https: / / doi .org/ 
10 .1128/ IAI .01090 -09.

Upton, A., O. Trelles, J. A. Cornejo-García, and J. R. Perkins. 2016. 
High-performance computing to detect epistasis in genome scale 
data sets. Brief. Bioinform. 17:368–379. https: / / doi .org/ 10 .1093/ 
bib/ bbv058.

Van Eenennaam, A., and J. F. Medrano. 1991. Milk protein poly-
morphisms in California dairy cattle. J. Dairy Sci. 74:1730–1742. 
https: / / doi .org/ 10 .3168/ jds .S0022 -0302(91)78336 -7.

Weikard, R., C. Kühn, T. Goldammer, G. Freyer, and M. Schwer-
in. 2005. The bovine PPARGC1A gene: Molecular characteriza-
tion and association of an SNP with variation of milk fat syn-
thesis. Physiol. Genomics 21:1–13. https: / / doi .org/ 10 .1152/ 
physiolgenomics .00103 .2004.

Wray, N. R., and W. Hill. 1989. Asymptotic rates of response from 
index selection. Anim. Sci. 49:217–227. https: / / doi .org/ 10 .1017/ 
S0003356100032347.

Yamanishi, Y., J.-P. Vert, A. Nakaya, and M. Kanehisa. 2003. Extrac-
tion of correlated gene clusters from multiple genomic data by 
generalized kernel canonical correlation analysis. Bioinformatics 
19(Suppl.1):i323–i330. https: / / doi .org/ 10 .1093/ bioinformatics/ 
btg1045.

Zhang, F., and D. Wagener. 2008. An approach to incorporate link-
age disequilibrium structure into genomic association analysis. 
J. Genet. Genomics 35:381–385. https: / / doi .org/ 10 .1016/ S1673 
-8527(08)60055 -7.

Pizarro et al.: CASEIN COMPLEX EPISTASIS ON MILK YIELD AND CONTENT

https://doi.org/10.1017/S0022029997002343
https://doi.org/10.1017/S0022029997002343
https://doi.org/10.3168/jds.S0022-0302(06)72590-5
https://doi.org/10.3168/jds.S0022-0302(06)72590-5
https://doi.org/10.1016/S0958-6946(03)00153-5
https://doi.org/10.1128/IAI.01090-09
https://doi.org/10.1128/IAI.01090-09
https://doi.org/10.1093/bib/bbv058
https://doi.org/10.1093/bib/bbv058
https://doi.org/10.3168/jds.S0022-0302(91)78336-7
https://doi.org/10.1152/physiolgenomics.00103.2004
https://doi.org/10.1152/physiolgenomics.00103.2004
https://doi.org/10.1017/S0003356100032347
https://doi.org/10.1017/S0003356100032347
https://doi.org/10.1093/bioinformatics/btg1045
https://doi.org/10.1093/bioinformatics/btg1045
https://doi.org/10.1016/S1673-8527(08)60055-7
https://doi.org/10.1016/S1673-8527(08)60055-7

	Nonparametric analysis of casein complex genes’ epistasisand their effects on phenotypic expression of milk yieldand composition in Murciano-Granadina goats
	INTRODUCTION
	MATERIALS AND METHODS
	Pre-Study Assumptions
	Animals
	Genotyping
	Milk Performance Standardization
	Milk Composition Analysis and Productive Records
	Linear Regression Modeling
	Statistical Assessment of Genetic Effects
	Dimensionality Reduction: LD and CATPCA
	Nonlinear Canonical Correlation Between Sets

	RESULTS
	Linear Regression Modeling
	Statistical Assessment of Genetic Effectsand Dimensionality Reduction
	Nonlinear Canonical Correlation Between Sets

	DISCUSSION
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES


