148 research outputs found

    Implicative Algebras

    Get PDF
    In this paper we introduce the concept of implicative algebras which is an equivalent definition of lattice implication algebra of Xu (1993) and further we prove that it is a regular Autometrized Algebra. Further we remark that the binary operation → on lattice implicative algebra can never be associative.Keywords: Implicative algebra, lattice implication algebras, Autometrized Algebras, regular Autometrized Algebra

    Invention into the AC Voltage Regulator with V/F Technique for Induction Motor Starting Applications

    Get PDF
    Modern electrical motors are available in many different forms with different mounting arrangements. To ensure a long life for the motor it is important to select it with correct degree of protection when operating under heavy duty conditions in a severe environment. Smooth starting is also one of major considerations to get long life and optimum efficiency. The conventional method to start an asynchronous motor with a soft starter is by reducing the voltage of the motor by varying the voltage “off time”. The “off time” could for example be controlled to achieve a desired maximum current level or a constant driving torque.  Even if the voltage is reduced the fundamental frequency of the voltage is equal to the supply voltage frequency. That gives a large difference between angular speed of supply voltage and angular speed of the rotor during start. Due to the large difference in angular speed the motor flux will be low and thereby also the ability to produce torque. Instead of using the conventional control method with a reduced voltage it is possible to use a method with controlled flux similar to frequency inverters for soft-starters. As the soft-starter does not have the intermediate DC energy storage the applied voltage vector has to be directly modulated from the mains supply

    Implicit self-consistent electrolyte model in plane-wave density-functional theory

    Full text link
    The ab-initio computational treatment of electrochemical systems requires an appropriate treatment of the solid/liquid interfaces. A fully quantum mechanical treatment of the interface is computationally demanding due to the large number of degrees of freedom involved. In this work, we describe a computationally efficient model where the electrode part of the interface is described at the density-functional theory (DFT) level, and the electrolyte part is represented through an implicit solvation model based on the Poisson-Boltzmann equation. We describe the implementation of the linearized Poisson-Boltzmann equation into the Vienna Ab-initio Simulation Package (VASP), a widely used DFT code, followed by validation and benchmarking of the method. To demonstrate the utility of the implicit electrolyte model, we apply it to study the surface energy of Cu crystal facets in an aqueous electrolyte as a function of applied electric potential. We show that the applied potential enables the control of the shape of nanocrystals from an octahedral to a truncated octahedral morphology with increasing potential

    Caudal regression syndrome: a rare case report

    Get PDF
    Caudal regression syndrome is a rare disorder characterised by abnormal development of structures in the caudal region of the embryo like lower lumbar and sacral vertebrae, urogenital and lower gastrointestinal system. It is secondary to abnormal development of mesoderm. Multiple hypotheses like genetic, metabolic and vascular hypoperfusion have been proposed as etiologies. It can be picked up in early second trimester by ultrasound. It has a higher incidence in diabetic pregnancies

    Transition metal saccharide chemistry and biology: syntheses, characterization, solution stability and putative bio-relevant studies of iron-saccharide complexes

    Get PDF
    A number of Fe(III) complexes of saccharides and their derivatives, and those of ascorbic acid were synthesized, and characterized by a variety of analytical, spectral (FT-IR, UV-Vis, EPR, Mossbauer and EXAFS), magnetic and electrochemical techniques. Results obtained from various methods have shown good correlations. Data obtained from EPR, magnetic susceptibility and EXAFS techniques could be fitted well with the mono-, di- and trinuclear nature of the complexes. The solution stability of these complexes has been established using UV-Vis absorption and cyclic voltammetric techniques as a function of pH of the solution. Mixed valent, Fe(II,III) ascorbate complexes have also been synthesized and characterized. Reductive release of Fe(II) from the complexes using sodium dithionite has been addressed. In vitro absorption of Fe(III)-glucose complex has been studied using everted sacs of rat intestines and the results have been compared with that of simple ferric chloride. Fe(III)-saccharide complexes have shown regular protein synthesis even in hemin-deficient rabbit reticulocyte lysate indicating that these complexes play a role that is equivalent to that played by hemin in order to restore the normal synthesis of protein. These complexes have exhibited enhanced DNA cleavage properties in the presence of hydrogen peroxide with pUC-18 DNA plasmid

    Precautionary Regulation in Europe and the United States: A Quantitative Comparison

    Get PDF
    Much attention has been addressed to the question of whether Europe or the United States adopts a more precautionary stance to the regulation of potential environmental, health, and safety risks. Some commentators suggest that Europe is more risk-averse and precautionary, whereas the US is seen as more risk-taking and optimistic about the prospects for new technology. Others suggest that the US is more precautionary because its regulatory process is more legalistic and adversarial, while Europe is more lax and corporatist in its regulations. The flip-flop hypothesis claims that the US was more precautionary than Europe in the 1970s and early 1980s, and that Europe has become more precautionary since then. We examine the levels and trends in regulation of environmental, health, and safety risks since 1970. Unlike previous research, which has studied only a small set of prominent cases selected non-randomly, we develop a comprehensive list of almost 3,000 risks and code the relative stringency of regulation in Europe and the US for each of 100 risks randomly selected from that list for each year from 1970 through 2004. Our results suggest that: (a) averaging over risks, there is no significant difference in relative precaution over the period, (b) weakly consistent with the flip-flop hypothesis, there is some evidence of a modest shift toward greater relative precaution of European regulation since about 1990, although (c) there is a diversity of trends across risks, of which the most common is no change in relative precaution (including cases where Europe and the US are equally precautionary and where Europe or the US has been consistently more precautionary). The overall finding is of a mixed and diverse pattern of relative transatlantic precaution over the period

    Getting into hot water:sick guppies frequent warmer thermal conditions

    Get PDF
    Ectotherms depend on the environmental temperature for thermoregulation and exploit thermal regimes that optimise physiological functioning. They may also frequent warmer conditions to up-regulate their immune response against parasite infection and/or impede parasite development. This adaptive response, known as ‘behavioural fever’, has been documented in various taxa including insects, reptiles and fish, but only in response to endoparasite infections. Here, a choice chamber experiment was used to investigate the thermal preferences of a tropical freshwater fish, the Trinidadian guppy (Poecilia reticulata), when infected with a common helminth ectoparasite Gyrodactylus turnbulli, in female-only and mixed-sex shoals. The temperature tolerance of G. turnbulli was also investigated by monitoring parasite population trajectories on guppies maintained at a continuous 18, 24 or 32 °C. Regardless of shoal composition, infected fish frequented the 32 °C choice chamber more often than when uninfected, significantly increasing their mean temperature preference. Parasites maintained continuously at 32 °C decreased to extinction within 3 days, whereas mean parasite abundance increased on hosts incubated at 18 and 24 °C. We show for the first time that gyrodactylid-infected fish have a preference for warmer waters and speculate that sick fish exploit the upper thermal tolerances of their parasites to self medicate

    AltitudeOmics: Red Blood Cell metabolic adaptation to high altitude hypoxia

    Get PDF
    Red blood cells (RBCs) are key players in systemic oxygen transport. RBCs respond to in vitro hypoxia  through  the so-called  oxygen-dependent  metabolic  regulation,  which  involves  the competitive  binding  of  deoxyhemoglobin  and  glycolytic  enzymes  to  the  N-terminal  cytosolic domain  of  band  3.  This  mechanism  promotes  the  accumulation  of  2,3-DPG,  stabilizing  the deoxygenated state of hemoglobin, and cytosol acidification, triggering oxygen off-loading through the  Bohr  effect.  Despite  in  vitro  studies,  in  vivo adaptations  to  hypoxia  have  not  yet  been completely elucidated. Within  the  framework  of  the AltitudeOmics  study,  erythrocytes  were  collected  from  21 healthy volunteers at sea level, after exposure to high altitude (5260m) for 1, 7 and 16days, and following  reascent  after  7days  at 1525m.  UHPLC-MS  metabolomics  results  were  correlated  to physiological and athletic performance parameters. Immediate  metabolic  adaptations  were  noted as early as a few hours from ascending  to >5000m, and maintained for 16 days at high altitude.  Consistent with the mechanisms elucidated in vitro, hypoxia promoted glycolysis and deregulated the pentose phosphate pathway, as well purine catabolism, glutathione homeostasis, arginine/nitric oxide and sulphur/H2S metabolism. Metabolic adaptations were preserved one week after descent, consistently with improved physical performances in comparison to the first ascendance, suggesting a mechanism of metabolic memory

    Evolution of sex-specific pace-of-life syndromes: genetic architecture and physiological mechanisms

    Get PDF
    Sex differences in life history, physiology, and behavior are nearly ubiquitous across taxa, owing to sex-specific selection that arises from different reproductive strategies of the sexes. The pace-of-life syndrome (POLS) hypothesis predicts that most variation in such traits among individuals, populations, and species falls along a slow-fast pace-of-life continuum. As a result of their different reproductive roles and environment, the sexes also commonly differ in pace-of-life, with important consequences for the evolution of POLS. Here, we outline mechanisms for how males and females can evolve differences in POLS traits and in how such traits can covary differently despite constraints resulting from a shared genome. We review the current knowledge of the genetic basis of POLS traits and suggest candidate genes and pathways for future studies. Pleiotropic effects may govern many of the genetic correlations, but little is still known about the mechanisms involved in trade-offs between current and future reproduction and their integration with behavioral variation. We highlight the importance of metabolic and hormonal pathways in mediating sex differences in POLS traits; however, there is still a shortage of studies that test for sex specificity in molecular effects and their evolutionary causes. Considering whether and how sexual dimorphism evolves in POLS traits provides a more holistic framework to understand how behavioral variation is integrated with life histories and physiology, and we call for studies that focus on examining the sex-specific genetic architecture of this integration
    corecore