40 research outputs found

    Differential Regional and Subtype-Specific Vulnerability of Enteric Neurons to Mitochondrial Dysfunction

    Get PDF
    Mitochondrial dysfunction is a central mediator of disease progression in diverse neurodegenerative diseases that often present with prominent gastrointestinal abnormalities. Gastrointestinal dysfunction in these disorders is related, at least in part, to defects in the enteric nervous system (ENS). The role of mitochondrial deficits in ENS neurodegeneration and their relative contribution to gastrointestinal dysfunction, however, are unclear. To better understand how mitochondrial abnormalities in the ENS influence enteric neurodegeneration and affect intestinal function, we generated mice (Tfam-ENSKOs) with impaired mitochondrial metabolism in enteric neurons and glia through the targeted deletion of the mitochondrial transcription factor A gene (Tfam). Tfam-ENSKO mice were initially viable but, at an early age, they developed severe gastrointestinal motility problems characterized by intestinal pseudo-obstruction resulting in premature death. This gastrointestinal dysfunction was caused by extensive, progressive neurodegeneration of the ENS involving both neurons and glia. Interestingly, mitochondrial defects differentially affected specific subpopulations of enteric neurons and regions of the gastrointestinal tract. Mitochondrial deficiency-related neuronal and glial loss was most prominent in the proximal small intestine, but the first affected neurons, nitrergic inhibitory neurons, had the greatest losses in the distal small intestine. This regional and subtype-specific variability in susceptibility to mitochondrial defects resulted in an imbalance of inhibitory and excitatory neurons that likely accounts for the observed phenotype in Tfam-ENSKO mice. Mitochondrial dysfunction, therefore, is likely to be an important driving force of neurodegeneration in the ENS and contribute to gastrointestinal symptoms in people with neurodegenerative disorders

    White paper on guidelines concerning enteric nervous system stem cell therapy for enteric neuropathies.

    Get PDF
    Over the last 20 years, there has been increasing focus on the development of novel stem cell based therapies for the treatment of disorders and diseases affecting the enteric nervous system (ENS) of the gastrointestinal tract (so-called enteric neuropathies). Here, the idea is that ENS progenitor/stem cells could be transplanted into the gut wall to replace the damaged or absent neurons and glia of the ENS. This White Paper sets out experts' views on the commonly used methods and approaches to identify, isolate, purify, expand and optimize ENS stem cells, transplant them into the bowel, and assess transplant success, including restoration of gut function. We also highlight obstacles that must be overcome in order to progress from successful preclinical studies in animal models to ENS stem cell therapies in the clinic

    Phonon-induced dephasing of localized optical excitations

    Get PDF
    The dynamics of strongly localized optical excitations in semiconductors is studied including electron-phonon interaction. The coupled microscopic equations of motion for the interband polarization and the carrier distribution functions contain coherent and incoherent contributions. While the coherent part is solved through direct numerical integration, the incoherent one is treated by means of a generalized Monte Carlo simulation. The approach is illustrated for a simple model system. The temperature and excitation energy dependence of the optical dephasing rate is analyzed and the results are compared to those of alternative approaches

    A GRFa2/Prop1/Stem (GPS) Cell Niche in the Pituitary

    Get PDF
    BACKGROUND: The adult endocrine pituitary is known to host several hormone-producing cells regulating major physiological processes during life. Some candidates to progenitor/stem cells have been proposed. However, not much is known about pituitary cell renewal throughout life and its homeostatic regulation during specific physiological changes, such as puberty or pregnancy, or in pathological conditions such as tumor development. PRINCIPAL FINDINGS: We have identified in rodents and humans a niche of non-endocrine cells characterized by the expression of GFRa2, a Ret co-receptor for Neurturin. These cells also express b-Catenin and E-cadherin in an oriented manner suggesting a planar polarity organization for the niche. In addition, cells in the niche uniquely express the pituitary-specific transcription factor Prop1, as well as known progenitor/stem markers such as Sox2, Sox9 and Oct4. Half of these GPS (GFRa2/Prop1/Stem) cells express S-100 whereas surrounding elongated cells in contact with GPS cells express Vimentin. GFRa2+-cells form non-endocrine spheroids in culture. These spheroids can be differentiated to hormone-producing cells or neurons outlining the neuroectoderm potential of these progenitors. In vivo, GPSs cells display slow proliferation after birth, retain BrdU label and show long telomeres in its nuclei, indicating progenitor/stem cell properties in vivo. SIGNIFICANCE: Our results suggest the presence in the adult pituitary of a specific niche of cells characterized by the expression of GFRa2, the pituitary-specific protein Prop1 and stem cell markers. These GPS cells are able to produce different hormone-producing and neuron-like cells and they may therefore contribute to postnatal pituitary homeostasis. Indeed, the relative abundance of GPS numbers is altered in Cdk4-deficient mice, a model of hypopituitarism induced by the lack of this cyclin-dependent kinase. Thus, GPS cells may display functional relevance in the physiological expansion of the pituitary gland throughout life as well as protection from pituitary disease

    Dosage Effects of Cohesin Regulatory Factor PDS5 on Mammalian Development: Implications for Cohesinopathies

    Get PDF
    Cornelia de Lange syndrome (CdLS), a disorder caused by mutations in cohesion proteins, is characterized by multisystem developmental abnormalities. PDS5, a cohesion protein, is important for proper chromosome segregation in lower organisms and has two homologues in vertebrates (PDS5A and PDS5B). Pds5B mutant mice have developmental abnormalities resembling CdLS; however the role of Pds5A in mammals and the association of PDS5 proteins with CdLS are unknown. To delineate genetic interactions between Pds5A and Pds5B and explore mechanisms underlying phenotypic variability, we generated Pds5A-deficient mice. Curiously, these mice exhibit multiple abnormalities that were previously observed in Pds5B-deficient mice, including cleft palate, skeletal patterning defects, growth retardation, congenital heart defects and delayed migration of enteric neuron precursors. They also frequently display renal agenesis, an abnormality not observed in Pds5Bβˆ’/βˆ’ mice. While Pds5Aβˆ’/βˆ’ and Pds5Bβˆ’/βˆ’ mice die at birth, embryos harboring 3 mutant Pds5 alleles die between E11.5 and E12.5 most likely of heart failure, indicating that total Pds5 gene dosage is critical for normal development. In addition, characterization of these compound homozygous-heterozygous mice revealed a severe abnormality in lens formation that does not occur in either Pds5Aβˆ’/βˆ’ or Pds5Bβˆ’/βˆ’ mice. We further identified a functional missense mutation (R1292Q) in the PDS5B DNA-binding domain in a familial case of CdLS, in which affected individuals also develop megacolon. This study shows that PDS5A and PDS5B functions other than those involving chromosomal dynamics are important for normal development, highlights the sensitivity of key developmental processes on PDS5 signaling, and provides mechanistic insights into how PDS5 mutations may lead to CdLS

    POLARIZATION DEPENDENCE OF HEAVY-HOLE AND LIGHT-HOLE QUANTUM BEATS

    No full text
    Simultaneous excitation of heavy- and light-hole quantum-well excitons with linearly polarized ultrashort laser pulses results in oscillating four-wave-mixing and pump-probe signals. These are elliptically polarized, except for exactly parallel and perpendicular incident polarizations, for which they are also linearly polarized. In the latter case, the heavy- and light-hole components are in phase or out of phase, respectively
    corecore