41 research outputs found

    Mismatch and synchronization:Influence of asymmetries in systems of two delay-coupled lasers

    Get PDF
    We study the synchronization properties of the delay dynamics of two identical semiconductor lasers coupled through a semitransparent mirror. Via an analytical and numerical approach, we investigate the influence of asymmetries, in particular mismatches of self- and cross-coupling strength and differences in self- and cross-coupling delay. We show that the former mismatch affects the stability of the zero-lag state but not the dynamics within the synchronization manifold, while the latter mismatch does not affect the quality of synchronization but alters the dynamics significantly. Our results are extended to different unidirectional coupling schemes. This is highly relevant for communication schemes utilizing chaotic dynamics. Finally, the influence of nonlinear gain saturation on the dynamics and stability of synchronization is discussed

    Adaptive Tuning of Feedback Gain in Time-Delayed Feedback Control

    Get PDF
    We demonstrate that time-delayed feedback control can be improved by adaptively tuning the feedback gain. This adaptive controller is applied to the stabilization of an unstable fixed point and an unstable periodic orbit embedded in a chaotic attractor. The adaptation algorithm is constructed using the speed-gradient method of control theory. Our computer simulations show that the adaptation algorithm can find an appropriate value of the feedback gain for single and multiple delays. Furthermore, we show that our method is robust to noise and different initial conditions.Comment: 7 pages, 6 figure

    Coherence resonance in a network of FitzHugh-Nagumo systems: interplay of noise, time-delay and topology

    Get PDF
    We systematically investigate the phenomena of coherence resonance in time-delay coupled networks of FitzHugh-Nagumo elements in the excitable regime. Using numerical simulations, we examine the interplay of noise, time-delayed coupling and network topology in the generation of coherence resonance. In the deterministic case, we show that the delay-induced dynamics is independent of the number of nearest neighbors and the system size. In the presence of noise, we demonstrate the possibility of controlling coherence resonance by varying the time-delay and the number of nearest neighbors. For a locally coupled ring, we show that the time-delay weakens coherence resonance. For nonlocal coupling with appropriate time-delays, both enhancement and weakening of coherence resonance are possible

    Synchronisation in networks of delay-coupled type-I excitable systems

    Full text link
    We use a generic model for type-I excitability (known as the SNIPER or SNIC model) to describe the local dynamics of nodes within a network in the presence of non-zero coupling delays. Utilising the method of the Master Stability Function, we investigate the stability of the zero-lag synchronised dynamics of the network nodes and its dependence on the two coupling parameters, namely the coupling strength and delay time. Unlike in the FitzHugh-Nagumo model (a model for type-II excitability), there are parameter ranges where the stability of synchronisation depends on the coupling strength and delay time. One important implication of these results is that there exist complex networks for which the adding of inhibitory links in a small-world fashion may not only lead to a loss of stable synchronisation, but may also restabilise synchronisation or introduce multiple transitions between synchronisation and desynchronisation. To underline the scope of our results, we show using the Stuart-Landau model that such multiple transitions do not only occur in excitable systems, but also in oscillatory ones.Comment: 10 pages, 9 figure

    Understanding the enhanced synchronization of delay-coupled networks with fluctuating topology

    Get PDF
    We study the dynamics of networks with coupling delay, from which the connectivity changes over time. The synchronization properties are shown to depend on the interplay of three time scales: the internal time scale of the dynamics, the coupling delay along the network links and time scale at which the topology changes. Concentrating on a linearized model, we develop an analytical theory for the stability of a synchronized solution. In two limit cases the system can be reduced to an “effective” topology: In the fast switching approximation, when the network fluctuations are much faster than the internal time scale and the coupling delay, the effective network topology is the arithmetic mean over the different topologies. In the slow network limit, when the network fluctuation time scale is equal to the coupling delay, the effective adjacency matrix is the geometric mean over the adjacency matrices of the different topologies. In the intermediate regime the system shows a sensitive dependence on the ratio of time scales, and specific topologies, reproduced as well by numerical simulations. Our results are shown to describe the synchronization properties of fluctuating networks of delay-coupled chaotic maps

    Stable Mutated tau441 Transfected SH-SY5Y Cells as Screening Tool for Alzheimer’s Disease Drug Candidates

    Get PDF
    The role of hyperphosphorylation of the microtubule-associated protein tau in the pathological processes of several neurodegenerative diseases is becoming better understood. Consequently, development of new compounds capable of preventing tau hyperphosphorylation is an increasingly hot topic. For this reason, dependable in vitro and in vivo models that reflect tau hyperphosphorylation in human diseases are needed. In this study, we generated and validated an in vitro model appropriate to test potential curative and preventive compound effects on tau phosphorylation. For this purpose, a stably transfected SH-SY5Y cell line was constructed over-expressing mutant human tau441 (SH-SY5Y-TMHT441). Analyses of expression levels and tau phosphorylation status in untreated cells confirmed relevance to human diseases. Subsequently, the effect of different established kinase inhibitors on tau phosphorylation (e.g., residues Thr231, Thr181, and Ser396) was examined. It was shown with several methods including immunosorbent assays and mass spectrometry that the phosphorylation pattern of tau in SH-SY5Y-TMHT441 cells can be reliably modulated by these compounds, specifically targeting JNK, GSK-3, CDK1/5, and CK1. These four protein kinases are known to be involved in in vivo tau phosphorylation and are therefore authentic indicators for the suitability of this new cell culture model for tauopathies

    Abstracts of the 33rd International Austrian Winter Symposium : Zell am See, Austria. 24-27 January 2018.

    Get PDF

    Utility functions for adaptively executing concurrent workflows

    Get PDF
    Workflows are widely used in applications that require coordinated use of computational resources. Workflow definition languages typically abstract over some aspects of the way in which a workflow is to be executed, such as the level of parallelism to be used or the physical resources to be deployed. As a result, a workflow management system has responsibility for establishing how best to map tasks within a workflow to the available resources. As workflows are typically run over shared resources, and thus face unpredictable and changing resource capabilities, there may be benefit to be derived from adapting the task-to-resource mapping while a workflow is executing. This paper describes the use of utility functions to express the relative merits of alternative mappings; in essence, a utility function can be used to give a score to a candidate mapping, and the exploration of alternative mappings can be cast as an optimization problem. In this approach, changing the utility function allows adaptations to be carried out with a view to meeting different objectives. The contributions of this paper include: (i) a description of how adaptive workflow execution can be expressed as an optimization problem where the objective of the adaptation is to maximize a utility function; (ii) a description of how the approach has been applied to support adaptive workflow execution in execution environments consisting of multiple resources, such as grids or clouds, in which adaptations are coordinated across multiple workflows; and (iii) an experimental evaluation of the approach with utility measures based on response time and profit using the Pegasus workflow system
    corecore