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We demonstrate that time-delayed feedback control can be improved by adaptively tuning the

feedback gain. This adaptive controller is applied to the stabilization of an unstable fixed point and

an unstable periodic orbit embedded in a chaotic attractor. The adaptation algorithm is constructed

using the speed-gradient method of control theory. Our computer simulations show that the

adaptation algorithm can find an appropriate value of the feedback gain for single and

multiple delays. Furthermore, we show that our method is robust to noise and different initial

conditions. VC 2011 American Institute of Physics. [doi:10.1063/1.3647320]

The control of nonlinear systems is a central topic in

dynamical system theory, with a diverse range of applica-

tions. Adaptive control schemes have emerged as a new

type of control method that optimizes the control param-

eters with respect to an appropriate goal function,

thereby minimizing, for instance, the consumed power or

the time needed to reach the control goal. In this work,

we combine time-delayed feedback control, an estab-

lished method from chaos control, with an adaptive

speed-gradient scheme to optimize the control force. We

demonstrate how this combined scheme can be utilized to

stabilize various target states, e.g., unstable fixed points

or periodic orbits, with little or no a priori knowledge

about the target state. We also investigate the robustness

of the method to noise and perturbations.

I. INTRODUCTION

Stabilization of unstable and chaotic systems forms an

important field of research in nonlinear dynamics. A variety

of control schemes have been developed to control periodic

orbits as well as steady states.1,2 A simple and efficient

scheme, introduced by Pyragas,3 is known as time-delay
autosynchronization (TDAS). This control method generates

a feedback from the difference of the current state of a sys-

tem to its counterpart some time units s in the past. Thus, the

control scheme does not rely on a reference system and has

only a small number of control parameters, i.e., the feedback

gain K and time delay s. It has been shown that TDAS can

stabilize both unstable periodic orbits, e.g., embedded in a

strange attractor3,4 as well as unstable steady states.5–7 In the

first case, TDAS is most efficient and noninvasive if s
corresponds to an integer multiple of the minimal period of

the orbit. In the latter case, the method works best if the time

delay is related to an intrinsic characteristic timescale

given by the imaginary part of the system’s eigenvalue.7

A generalization of the original Pyragas scheme, suggested

by Socolar et al.,8 uses multiple time delays. This extended
time-delay autosynchronization (ETDAS) introduces a mem-

ory parameter R, which serves as a weight of states further in

the past. In Ref. 9, it is shown that this method is able to control

an unstable fixed points for a larger range of parameters com-

pared with the original TDAS scheme. A variety of analytic

results about time-delayed feedback control are known,10–13 for

instance, in the case of long time delays,14 transient behavior,15

unstable spatio-temporal patterns,16 or regarding the odd

number limitation,17 which was refuted in Refs. 18 and 19.

In the present paper, we apply the speed-gradient

method20–24 to adaptively tune the feedback gain K, which is

used in both TDAS and ETDAS control methods, and utilize

this scheme to stabilize an unstable focus in a generic model,

and an unstable periodic orbit embedded in a chaotic attrac-

tor. The former model is the generic linearization of a system

with an unstable fixed point close to a Hopf bifurcation. The

speed-gradient method is a well known adaptive control

technique that minimizes a predefined goal function by

changing an accessible system parameter appropriately. The

adaptation of the feedback gain may be useful, in particular,

for systems with slowly changing parameters or when the

domain of stability is unknown. There are several other

approaches to adaptive control of nonlinear systems in the

control literature.25–27 Here, we have chosen the speed-

gradient method because it is simple and robust.

This paper is organized as follows: In Sec. II, we develop

the adaptation algorithm using the example of an unstable focus.

In Sec. III, we apply the adaptive control scheme to stabilize an

unstable periodic orbit embedded in the chaotic attractor of the

Rössler system. Finally, we conclude with Sec. IV.

II. STABILIZATION OF AN UNSTABLE FIXED POINT

First, we will consider stabilization of an unstable fixed

point by time-delayed feedback. Unlike in previous works
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(see Refs. 7, 9, and references therein), we do not fix the

feedback gain a priori, but tune it adaptively. We consider a

general dynamical system given by a nonlinear vector field f

_XðtÞ ¼ f½XðtÞ�; (1)

with X 2 Rn and an unstable fixed point X* solving

f(X*)¼ 0. The stability of this fixed point is obtained by lin-

earizing the vector field around X
*. Without loss of general-

ity, let us assume X*¼ 0. In the following, we will consider

the generic case of a two-dimensional unstable focus, i.e., a

system close to a Hopf bifurcation, for which the linearized

equations can be written in center manifold coordinates

x; y 2 R as follows:

_x ¼ k xþ x y; (2a)

_y ¼ �x xþ k y; (2b)

where k and x are positive real numbers. k may be viewed

as the bifurcation parameter governing the distance from the

instability threshold, i.e., a Hopf bifurcation, and x is the

intrinsic eigenfrequency of the focus. For notational conven-

ience, Eqs. (2) can be rewritten as

_XðtÞ ¼ A XðtÞ: (3)

The eigenvalues K0 of the 2� 2 matrix A are given by

K0 ¼k 6 ix, so that for k> 0 and x= 0 the fixed point is an

unstable focus. We now apply time-delayed feedback

control3 in order to stabilize this fixed point

_xðtÞ ¼ k xðtÞ þ x yðtÞ � K½xðtÞ � xðt� sÞ�; (4a)

_yðtÞ ¼ �x xðtÞ þ k yðtÞ � K½yðtÞ � yðt� sÞ�; (4b)

where the feedback gain K and the time delay s are real num-

bers. We assume that the value of s is known and appropri-

ately chosen. Mathematically speaking, the goal of the

control method is to change the sign of the real part of

the eigenvalue, leading to a decay of perturbations from the

target fixed point.

Since the control force applied to the ith component of

the system involves only the same component, this control

scheme is called diagonal coupling28 and is suitable for an

analytical treatment. Note that the feedback term

vanishes if the fixed point is stabilized since x*(t–s)¼ x*(t)
and y*(t–s)¼ y*(t) for all t, indicating the noninvasiveness of

the TDAS method.

To obtain an adaptation algorithm for the feedback gain

K according to the standard procedure of the speed-gradient

method,21–24,29 let us choose the goal function or cost

function as follows:

QðXÞ ¼ 1

2
½xðtÞ � xðt� sÞ�2 þ ½yðtÞ � yðt� sÞ�2
n o

: (5)

Successful control yields Q(X(t))! 0 as t!1. The speed-

gradient algorithm in the differential form is given

by _K ¼ �crK
_Q, where c> 0 is the adaptation gain and

rK denotes @=@K. Thus, we need to calculate the

gradient—with respect to the feedback gain K—of the rate

of change of the cost function. For the above cost function

Eq. (5), we obtain

_Q ¼ ½xðtÞ � xðt� sÞ�½ _xðtÞ � _xðt� sÞ�
þ ½yðtÞ � yðt� sÞ�½ _yðtÞ � _yðt� sÞ�: (6)

The time derivatives of x and y are given by Eqs. (4). Thus,

the speed-gradient method leads to the following equation

for the feedback gain:

_KðtÞ¼ cf½xðtÞ� xðt� sÞ�½xðtÞ�2xðt� sÞþxðt�2sÞ�
þ ½yðtÞ� yðt� sÞ�½yðtÞ�2yðt� sÞþyðt�2sÞ�g: (7)

Owing to homogeneity the right hand sides of Eqs. (4) and

(7), without loss of generality the adaptation gain c can be

chosen as 1, because Eqs. (4) and (7) can be rescaled by

transformation xðtÞ ! xðtÞ= ffiffiffi
c
p

and yðtÞ ! yðtÞ= ffiffiffi
c
p

.

Figure 1 depicts the time series of x and K according to

Eqs. (4) and (7) for different initial conditions x(0) �
[0.02,0.5] in steps of 0.02 from light (green) to dark (blue)

and y(0)¼ 0. In all simulations x(t)¼ y(t)¼ 0 for t< 0 and

K(t)¼ 0 for t� 2s. The parameters are chosen as k¼ 0.5,

x¼p, and s¼ 1. Figure 1(a) shows that the adaptation algo-

rithm works for a large range of initial conditions. Naturally,

for initial conditions close to the fixed point the goal is

reached faster. If the system starts initially too far from the

fixed point (x(0)> 0.85, y(0)¼ 0) the control fails (curves

not shown). Note, however, that the basin of attraction can

be enlarged by increasing c. In fact, due to the scaling,

invariance, the maximum value of jx(0)j that still leads to

successful control is proportional to
ffiffiffi
c
p

.

In Ref. 7, it was shown that in the (K, s)-plane tongues

exist for which the fixed point can be stabilized, i.e., for a

given s there is a K-interval for which the control is success-

ful. As can be seen in Fig. 1(b), the adaptive algorithm

FIG. 1. (Color online) Adaptive control of the fixed point: (a) Time series

x(t) and (b) feedback gain K(t) for different initial conditions: x(0) �
[0.02,0.5] in steps of 0.02 (from light (green) to dark (blue); in panel (b)

from top to bottom), y(0)¼ 0 . Parameters: k¼ 0.5, x¼p, c¼ 1, s¼ 1.
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converges to some appropriate value of K in this interval

depending upon the initial conditions.

Figure 2 demonstrates that the algorithm works for a

range of s, i.e., for any value of s within the domain of stabil-

ity of the TDAS control.7 Black empty circles depict the

transient time tc after which the control goal is reached in de-

pendence on the time delay s. This is the case if the cost

function Q becomes sufficiently small. We define the tran-

sient time by the bound hQi �
Ð tc

tc�2s Qðt0Þdt0 < 2s� 10�10.

The dark (dark purple) shaded regions correspond to the ana-

lytically obtained s-intervals of the Pyragas control.7 Inside

these intervals, tc has a finite value confirming that the

adaptive control scheme adjusts the feedback gain K to an

appropriate value. For a comparison with the transient time

of TDAS (see Ref. 15) where a power law scaling

tc� (K�Kc)
�1 with respect to the fixed feedback gain K has

been found (here, Kc corresponds to the boundaries of stabil-

ity). The curves corresponding to non-zero memory parame-

ter R (crosses and squares) will be discussed below where

the speed-gradient method is applied to the ETDAS scheme.

For a thorough analysis of the stability of the fixed point,

we perform a linear stability analysis for the system Eqs. (4)

and (7). This system has the fixed point (0, 0, K*) for any

K*¼ const. Linearization around the fixed point and the

ansatz dx, dy, dK ! exp(Kt) yields a transcendental

eigenvalue equation

0¼det
k�Kð1�e�KsÞ�K x 0

�x k�Kð1�e�KsÞ�K 0

0 0 �K

2
4

3
5; (8)

¼�K½kþix�Kð1�e�KsÞ�K�½k�ix�Kð1�e�KsÞ�K�;
(9)

which can be solved numerically. This equation is equal to

the case of Pyragas control with constant feedback gain con-

sidered in Ref. 7 except for the factor K. Thus, the adaptively

controlled system has an additional eigenvalue at K¼ 0. It

results from the translation invariance of the system in the

direction of K on the fixed point line (0,0,K). This means that

the K values found in the case of the standard Pyragas con-

trol lead again to a stabilization of the fixed point. The

advantage of an adaptive controller is that an appropriate

feedback gain is realized in an automated way, i.e., without

prior knowledge of the domain of stability, as long as a

stability domain exists for this value of s.

An additional advantage of an adaptive control scheme is

that it allows one to follow slow changes of the system param-

eters, which are usually present in the experimental situations.

To test the ability of our adaptive control scheme to cope with

such parameter drifts, we slowly vary k in the following way:

k(t)¼ 0.01þ 1.8 sin (0.001t). The result is illustrated in Fig. 3.

In Fig. 3(a), the region of stability of the standard Pyragas con-

trol in the (k, K)-plane (see Ref. 7) is marked by green (gray)

shading. If k is slowly increased from its initial value 0.01, K
follows the change in such a way that whenever the lower

boundary of the stability region is crossed and the fixed point

becomes unstable, the adaptation algorithm adjusts K such that

the stable region is re-entered. This creates a step-like trajec-

tory in the (k, K)-plane, which is depicted as a red (solid)

curve with an arrow. Finally, if k is decreased again, K does

not change because it already has attained a value for which

the control works in a broad k-interval resulting in a horizontal

trajectory in the (k, K)-plane. Figure 3(b) depicts the corre-

sponding time series of K(t) as a blue (solid) curve, and of the

drifting parameter k(t) as a red (dashed) curve, respectively.

To test the robustness of the control algorithm, we add

Gaussian white noise ni (i¼ 1,2) with zero mean and unity

variance (hni (t)i¼ 0, hni (t)nj (t� t0)i¼ dij d(t� t0)) to the

system variables x and y

_xðtÞ ¼ k xðtÞ þ x yðtÞ
� KðtÞ½xðtÞ � xðt� sÞ� þ Dn1ðtÞ;

(10a)

_yðtÞ ¼ �x xðtÞ þ k yðtÞ
� KðtÞ½yðtÞ � yðt� sÞ� þ Dn2ðtÞ;

(10b)

where D is the strength of the noise.

FIG. 2. (Color online) Transient time tc after which the control goal is

reached in dependence on the delay time s for TDAS (black circles) and

ETDAS with R¼ 0.35 ((blue) crosses), and R¼ 0.95 ((red) squares). The

dark (dark purple), medium (bright purple), and light (red) shaded regions

denote the possible range of s for R¼ 0, 0.35, and 0.95, respectively. Param-

eters as in Fig. 1.

FIG. 3. (Color online) Adaptive control of the fixed point for slowly drifting

system parameter k. (a) Adaptive adjustment of K in the (k, K)-plane. Green

(gray) shaded region: region of stability of the standard Pyragas control. Red

(solid) line with arrow: adaptation of feedback gain K if k is slowly changed

(k(t)¼ 0.01þ 1.8 sin (0.001t)). (b) Corresponding time series K(t) (blue

solid line) and k(t) (dashed red line). Other parameters as in Fig. 1.
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In Fig. 4(a), the ensemble average over 200 realizations,

i.e., hxðtÞi ¼ 1=200
P200

i¼1 xiðtÞ, for D¼ 0.1 (intermediate

noise) is depicted as a solid (red) curve. The thin (blue) curve

exemplarily depicts one realization. The corresponding

standard deviation rx(t) of x(t) is shown as a gray (green)

curve. The control is successful in all realizations: For large

t, the mean hx(t)i fluctuates around the fixed point value at

zero, due to the finite number of realizations. The standard

deviation approaches a value smaller than the standard

deviation of the input noise.

This is further elaborated in Fig. 4(b), which depicts the

standard deviation rx at t¼ 100 versus the noise strength

D as (green) crosses. If D becomes too large the standard

deviation exceeds the one of the input noise indicated by the

dashed (blue) line. This is the case for D �> 0:4. Then the con-

trol algorithm will generally fail (time series not shown

here): The oscillations of x(t) become larger with increasing

t. Accordingly, the standard deviation rx(t) increases with

t indicating that the dynamics is dominated by noise which

forces at least some of the realizations to diverge. The black

(red) curve in Fig. 4(b) depicts the asymptotic value K1 of

the feedback gain. For intermediate noise strength, an

increased feedback gain K compensates the influence of

noise ensuring that the control is still successful. For too

large D, K increases to a value beyond the domain of

stability and stabilization cannot be achieved.

We conclude that the adaptive algorithm is quite robust

to noise (the escape rate is vanishingly small for D �< 0:4)

and only fails for large noise ðD �> 0:4Þ. Our method allows

for finding the appropriate K for all values of s for which the

standard Pyragas control stabilizes the fixed point and is able

to follow slow drifts in the system parameters.

Note that the method still works if the control term is added

only to the x-component. Then, using Q(x)¼ [x(t)� x(t� s)]2=2

as a goal function leads to qualitatively very similar results. This

observation becomes relevant for experimental realizations of

the time-delayed feedback control when only certain compo-

nents of the system under control are accessible for

measurements.30

Next, we consider the ETDAS scheme8

_XðtÞ ¼ A XðtÞ � FðtÞ; (11)

where the ETDAS control force F can be written as

FðtÞ ¼ K
X1
n¼0

Rn Xðt� nsÞ � Xðt� ðnþ 1ÞsÞ½ �; (12a)

¼ K XðtÞ � ð1� RÞ
X1
n¼1

Rn�1Xðt� nsÞ
" #

; (12b)

¼ K XðtÞ � Xðt� sÞ½ � þ RFðt� sÞ: (12c)

Here, R � (�1,1) is a memory parameter that takes into

account those states that are delayed by more than one time

interval s. Note that R¼ 0 recovers the TDAS control

scheme introduced by Pyragas.3 The first form of the control

force, Eq. (12a), indicates the noninvasiveness of the

ETDAS method because X
*(t – s)¼X

*(t) if the fixed point

is stabilized. The third form, Eq. (12c), is suited best for an

experimental implementation since it involves states further

than s in the past only recursively.

To apply a speed-gradient adaptation algorithm for the

feedback gain K, we follow the same strategy as before

and choose the goal function as Q(x)¼ [(x(t)� x(t –

s))2þ (y(t)� y(t – s))2]=2. Using again _K ¼ �crK
_Q, we

obtain for a diagonal control scheme

_KðtÞ ¼ cfðxðtÞ � xðt� sÞÞ½ðxðtÞ � 2xðt� sÞ þ xðt� 2sÞÞ
þ RSxðt� sÞ� þ ðyðtÞ � yðt� sÞÞ½ðyðtÞ � 2yðt� sÞ
þ yðt� 2sÞÞ þ RSyðt� sÞ�g; (13)

with the abbreviations

SxðtÞ¼
X1
n¼0

Rn½xðt�nsÞ�2xðt�ðnþ1ÞsÞþ xðt�ðnþ2ÞsÞ�

¼ ½xðtÞ�2xðt� sÞþ xðt�2sÞ�þRSxðt� sÞ

SyðtÞ¼
X1
n¼0

Rn½yðt�nsÞ�2yðt�ðnþ1ÞsÞþ yðt�ðnþ2ÞsÞ�

¼ ½yðtÞ�2yðt� sÞþ yðt�2sÞ�þRSyðt� sÞ: (14)

In Ref. 9, the domains of stability for which ETDAS works

were obtained analytically. The intervals of s increase with

R and are larger than in the case of TDAS (R¼ 0).

Figure 2 depicts the transient time tc in dependence on s
for R¼ 0.35 and 0.95 as (blue) crosses and (red) squares,

respectively. The light (red) and medium (purple) shaded

regions indicate the ranges of stability of s.9 For odd

FIG. 4. (Color online) Robustness to noise. (a): Thick solid (red) curve: en-

semble average hx(t)i of 200 realizations; thin (blue) curve: x(t) for one

example trial; gray (green) curve: corresponding standard deviation rx(t) of

x(t) for a fixed noise intensity D¼ 0.1. (b): (Green) crosses: standard devia-

tion rx(100) of hx(t¼ 100)i; dashed (blue) line: standard deviation of the input

noise given by D; black (red) curve: asymptotic value K1 of the feedback

gain. Parameters: c¼ 0.001, x(0)¼ 0.05, y(0)¼ 0. Other parameters as in

Fig. 1.
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multiples of half of the intrinsic period T0 : 2p=x, i.e.,

s ¼ T0=2ð2nþ 1Þ; n 2N, tc is small, demonstrating the effi-

ciency of the adaptive algorithm. Towards the boundary of

the domain of stability, tc increases but remains finite. The

control algorithm only fails very close to the border of the

intervals of s. We conclude that the adaptive control algo-

rithm for ETDAS converges to appropriate values of K and

stabilizes the fixed point even for parameters where TDAS

fails.

III. STABILIZATION OF AN UNSTABLE PERIODIC
ORBIT IN THE RÖSSLER SYSTEM

In this section, we apply the adaptive delayed feedback

control algorithm to the Rössler system which is a paradig-

matic model for chaotic systems. The system exhibits cha-

otic oscillations born via a cascade of period-doubling

bifurcations and is given by the following equations includ-

ing the control term:

_xðtÞ ¼ �yðtÞ � zðtÞ � K½xðtÞ � xðt� sÞ�; (15a)

_yðtÞ ¼ xðtÞ þ ayðtÞ; (15b)

_zðtÞ ¼ bþ zðtÞ½xðtÞ � l�: (15c)

In the following, we fix the parameter values as a¼ 0.2,

b¼ 0.2, and l¼ 6.5 in the chaotic regime. Unstable periodic

orbits with periods T1 � 5.91679 (“period-1 orbit”) and T2 �
11.82814 (“period-2 orbit”) are embedded in the chaotic

attractor. As shown in Ref. 4 by a bifurcation analysis, appli-

cation of the delayed feedback of Pyragas type with s¼T1

and 0.24<K< 2.3 stabilizes the period-1 orbit, and it

becomes the only attractor of the system. In Ref. 11, it was

predicted analytically by a linear expansion that control is

realized only in a finite range of the values of K: At the lower

control boundary, the limit cycle should undergo a period-

doubling bifurcation, and at the upper boundary, a Hopf

bifurcation occurs generating a stable or an unstable torus

from a limit cycle (Neimark-Sacker bifurcation).

We use Q(x)¼ [x(t)� x(t – s)]2=2 as a goal function and

as mentioned in Sec. II obtain the speed-gradient adaptation

algorithm for K,24

_KðtÞ¼ c½xðtÞ� xðt� sÞ�½xðtÞ�2xðt� sÞþ xðt�2sÞ�; (16)

with the initial value K(0)¼ 0.

Figure 5(a) depicts the time series of a stabilized orbit

for a time delay s¼ T1. Panel (b) shows that the adaptation

algorithm converges to an appropriate value of K and the

cost function tends to zero.

Contrary to the previous case, it is not possible to set the

adaptation gain c to 1 by rescaling the system but the value of

c is crucial for successful control. To explore the role of c, we

determine the fraction of realizations fc where the control goal

is reached as a function of c. The initial conditions are Gaus-

sian distributions with the mean hx(0)i¼ hy(0)i¼ hz(0)i¼ 0,

respectively, and the standard deviations are rx(0) ¼ry(0)

¼rz(0)¼ 1. It is assumed that the control goal is reached at

time tc if the following condition holds: hQi �
Ð tc

tc�2s Qðt0Þdt0

< 0:002s.

Figure 6 depicts fc(c) ((red) circles) and tc(c) ((blue)

crosses) demonstrating that the optimal adaptation gain is

around c¼ 0.26. For c close to this value, the algorithm con-

verges fast and reliably. Accordingly, the standard deviation

of tc is small.

This demonstrates that for appropriate values of c, the

chaotic dynamics can be controlled.

IV. CONCLUSION

In summary, we have proposed an adaptive controller

based on the speed-gradient method, to tune the feedback

gain of time-delayed feedback control to an optimal value.

We have shown that the adaptation algorithm can find appro-

priate values for the feedback gain and thus stabilize the

desired periodic orbit or fixed point. This has been realized

FIG. 5 (Color online) Adaptive control of an unstable periodic orbit in the

Rössler attractor Eqs. (15). (a): Phase portrait (after a transient time of 150

time units). (b): Time series of K(t) with adaptive control given by Eq. (16)

as solid (blue) curve. The dashed (red) curve shows the goal function Q.

Parameters: a¼ 0.2, b¼ 0.2, l¼ 6.5, c¼ 0.1, and s¼ 5.91679.

FIG. 6. (Color online) Adaptive control of the Rössler system. Full (red)

circles: fraction of realizations fc where the adaptive control algorithm stabi-

lized the orbit versus the adaptation gain c; black (blue) crosses: Average

time tc after which the control goal is reached versus c; dotted (blue) lines:

error bars (standard deviation) corresponding to tc. Other parameters as in

Fig. 5. Total number of realizations: 100.
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both for the stabilization of an unstable focus in a generic

model and the stabilization of an unstable periodic orbit em-

bedded in a chaotic attractor. We have demonstrated the

robustness of our method to different initial conditions and

noise. We stress that this adaptive controller may especially

be useful for systems with unknown or slowly changing pa-

rameters where the domains of stability in parameter space

are unknown. In particular, we have shown by a simulation

with a drifting bifurcation parameter k that our method is

able to follow such slow parameter drifts. It should be noted

that the automatic adjustment of the feedback gain K is pos-

sible without changing the value of the adaptation gain c of

the speed-gradient method. This shows that the algorithm is

robust and simple to apply. Our method might be used to

tune more than one parameter, increasing its range of possi-

ble application.
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