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Abstract. We study the dynamics of networks with coupling delay,
from which the connectivity changes over time. The synchronization
properties are shown to depend on the interplay of three time scales:
the internal time scale of the dynamics, the coupling delay along the
network links and time scale at which the topology changes. Concen-
trating on a linearized model, we develop an analytical theory for the
stability of a synchronized solution. In two limit cases, the system can
be reduced to an “effective” topology: in the fast switching approxima-
tion, when the network fluctuations are much faster than the internal
time scale and the coupling delay, the effective network topology is the
arithmetic mean over the different topologies. In the slow network limit,
when the network fluctuation time scale is equal to the coupling delay,
the effective adjacency matrix is the geometric mean over the adja-
cency matrices of the different topologies. In the intermediate regime,
the system shows a sensitive dependence on the ratio of time scales,
and on the specific topologies, reproduced as well by numerical simula-
tions. Our results are shown to describe the synchronization properties
of fluctuating networks of delay-coupled chaotic maps.

1 Introduction

In many interacting systems, the transmission time for information exceeds the time
scale of the internal node dynamics. Hence, delay-coupled networks are relevant in
a variety of fields, including coupled optical or opto-electronic systems, communi-
cation and transportation systems, social networks and biological networks as gene
regulatory and neural systems. For example, in the brain a coupling delay between
interacting neurons arises from the conduction time of an electric signal along the
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axon [1], while it accounts for the traveling time of light between lasers (see [2–4] and
references therein). In engineering networks, delayed interactions are discussed in the
context of transport and mobility issues [5], power grids control or complex supply
networks [6,7].

One of the most studied properties of interacting elements is the ability to show
synchronized behavior [8–11]. The synchronization patterns allowed in a network
have been shown to relate to the network symmetries [12]; in a network of identical
elements, the stability of a symmetric state can be directly related to the spectral
properties of the adjacency matrix by the master stability function [13]. In delay-
coupled networks, this connection between (zero-lag) synchronization and spectral
properties of the coupling matrix is even simpler [14,15]; stability is shown to depend
on the magnitude of the spectrum in a monotonous way.

These results are restricted to network connections that are constant in time.
However, it is often more realistic to consider a coupling topology that fluctuates.
Such time-varying systems arise in a broad range of systems such as (and not lim-
iting to) moving agents, social networks and synaptic plasticity in neural networks
[16–24]. Synchronization in such time-varying networks is being studied in the context
of diffusive coupling of moving oscillators [25–27], chaotic units [28,29] and genetic
oscillators moving on lattices [30,31], while consensus problems have been investi-
gated in small-world networks of agents with switching topology and time-delay,
relying on algebraic graph theory, random matrix theory and control theory [32,33].
In the context of neural networks with delay, synchronization transitions induced by
the fluctuation of adaptive strength were recently reported [34]. Similar results have
been found in the case of developing neural networks [35] or spike-timing dependent
plasticity [36].

A common result in all these problems is the so-called “fast switching approxima-
tion” [37]: if the network topology changes faster than the internal node dynamics,
the system can be approximated by a constant topology, that is the arithmetic mean
of the topology over time. However, a full understanding of the dynamics, if the
network time scale and internal time scale interfere, is still lacking, to the best our
knowledge.

In a previous publication [38], we numerically studied synchronization properties
of delay-coupled networks with a time-varying topology. We considered an interaction
network of coupled chaotic maps with a single coupling delay τ , with a topology
fluctuating among an ensemble of small-world networks, with a characteristic time-
scale Tn. We found that random network switching may enhance the stability of
synchronized states, depending on the interplay between the time-scale of the delayed
interactions τ and that of the network fluctuations Tn. If the network switching
is fast Tn � τ , a strong enhancement of the synchronizability of the network has
been observed, in the sense that synchronization is stabilized compared to a typical
network of the ensemble. This result is in qualitative agreement with the fast switching
approximation [37], although the network time exceeds the internal time scale of the
nodes.

Here, in order to understand the physics behind the results obtained in [38],
we develop an analytical theory in the linearized limit, based on the master stability
function. We express the “effective” connectivity as a function of the three time scales:
the internal time scale Tin, the characteristic time for network fluctuations Tn and the
interaction delay time τ . Three cases are investigated: when the network fluctuations
are much faster than the internal time scale and the coupling delay (Tn � Tin, τ),
the effective network adjacency matrix is the arithmetic average over the different
adjacency matrices, as in the fast switching approximation. When coupling delay
and network fluctuation time scales are equal (Tin � Tn = τ), in the slow network
approximation, the effective adjacency matrix is the geometric mean over the different
adjacency matrices. Thirdly, if all three time scales are separated Tin � Tn � τ ,
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we show that the dynamics depends sensitively on the ratio of time scales and the
properties of the temporal topologies.

The paper is organized as follows: in Section 2, we present the modelling equations
and apply the master stability formalism to the corresponding linearized model. In
Section 3, we discuss the behavior of the system in the fast and slow network approxi-
mation, respectively. The interplay of time scales is largely discussed as well by paying
attention to the parity effect in the relation between τ and Tn. Sections 4 and 5 present
our numerical simulations both for linear and nonlinear systems, respectively. The
last section is devoted to conclusions. The more elaborate analytical calculations are
presented in the Appendix.

2 Modelling equations

We start from a general model of N identical scalar elements coupled with interaction
delays,

ẋi(t) = f(xi) +
N∑
j

Aij(t)g (xj(t− τ)) , (1)

with xi ∈ R. The coupling topology is modelled by a time-varying N ×N adjacency
matrix A(t), whose rows add up to one to ensure the existence of a permutation
symmetric state. The coupling delay τ is constant over the links.

To determine the stability of a symmetric solution x1(t) = x2(t) = . . . = xN (t) ≡
x(t) (i.e. a symmetric fixed point, an in-phase oscillatory solution or a chaotic state in
complete synchronization), the modelling equation is linearized around the symmetric
solution x(t). A small perturbation δxi(t) = xi(t)− x(t) evolves according to,

δẋi = f ′(x(t))δxi(t) +

N∑
j

Aij(t)g
′(x(t− τ))δxj(t− τ) , (2)

where f ′ and g′ are the derivatives of the functions f and g, respectively, evaluated
along the symmetric solution x(t).

We consider the simplest case with constant coefficients: the first term f ′(x(t)) ≡
−λ0 represents an “internal” decay rate of the nodes; if the nodes are chaotic, it
reduces to the (opposite) sub-Lyapunov exponent [14]. The term g′(x(t − τ)) ≡ κ
represents the coupling strength. After renaming the variables δxi ≡ xi, the linearized
model can be rewritten as

ẋ(t) = −λ0x + κA(t)x(t− τ) , (3)

where x(t) = (x1(t), . . . , xN (t))T . In a constant network, it is straightforward to
solve this system analytically by calculating the master stability function. Evaluating
equation (3) along the eigenvectors vk of the adjacency matrix A, one finds

v̇k(t) = −λ0vk + κγkvk(t− τ) , (4)

with γk the eigenvalue associated to the eigenvector vk. The system evolves then
exponentially with a rate given by the master stability function λ(γk). In the limit
of long delays τ � λ−1

0 , and in the absence of a strongly unstable solution, λ0 > 0,
the set of exponential solutions of equation (4) {λ(γk)} can be written as a pseudo-
continuous spectrum [39]



1132 The European Physical Journal Special Topics

λ(γ, ω) = iω +
µ(ω)

τ
= iω +

1

τ
ln

∣∣∣∣ κγ

λ0 + iω

∣∣∣∣ . (5)

This result applies for steady states, or for simple chaotic systems with a constant
slope, as the Bernouilli map. However, it is also a first order approximation for chaotic
systems [40] and reproduces the scaling properties of the spectrum of Lyapunov
exponents of chaotic systems with time-delay τ and eigenvalues of magnitude |γ|
[14,15].

Here, we consider a coupling matrix A(t) that is not constant: it changes discon-
tinuously after a network time Tn, running through a sequence of network topologies
as A1, A2, . . . Thus, the system is non-autonomous, with time-dependent parameters
[41]. However, in the following we show that, in certain limits, the synchronization
properties of the system under a fluctuating topology can be described with a con-
stant “effective” coupling topology Aeff, allowing for to calculate a master stability
function for nodes coupled with a time-varying topology.

3 Theoretical results

3.1 Fast network approximation

In instantaneously coupled networks, it is well known that, if the network changes
fast enough, the effective network is the average network over time [37]. This so-called
“fast switching approximation” is valid as well in delay-coupled networks. Indeed, if
Tn � λ−1

0 , one can approximate

x(t0 + Tn) ≈ x(t0) + Tnẋ(t) (6)

≈ x(t0) + Tn (−λ0x(t0) + κA1x(t0 − τ)) ,

so that at t = t0 +MTn, up to first order in Tn, we retrieve

ẋ(t0) ≈ 1

MTn
(x(t0 +MTn)− x(t0))

≈ −λ0x(t0) +
κ

M

M∑
m=1

Amx(t0 − τ) . (7)

This leads to an “effective” adjacency matrix

Aeff =
1

M

M∑
m=1

Am . (8)

We illustrate this result for a small network of ten coupled nodes, that alternates
regularly between two topologies. The topologies A1 and A2 are randomly chosen,
non-commuting small-world networks with 10 nodes, with normalized row sum. Their
adjacency matrices are plotted in Figure 1.

According to the fast switching approximation, the nodes evolve exponentially.
The decay or growth rate is given by the most unstable solution of equation (5), using
the effective adjacency matrix Aeff given by equation (8). For the exponential decay
rate, we find
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Fig. 1. Connectivity of the two non-commuting adjacency matrices A1 and A2, that are
used in the numerical illustrations.

λ ≈ 1

τ
ln

∣∣∣∣κγeff

λ0

∣∣∣∣ . (9)

Along the synchronization manifold, we have γeff = 1 by construction, and hence
the dynamics on the synchronization manifold is the same as in a constant net-
work. The transverse stability, which determines the synchronization properties of
the network, is determined by the second largest eigenvalue of the arithmetic mean
network.

The transverse evolution is measured by the variance over the nodes. We have

µ(t) =
1

N

N∑
i=1

xi(t), σ2(t) =
1

N

N∑
i=1

(xi(t)− µ(t))2, (10)

so that the transverse decay rate (TDR), λ, can be estimated from the evolution of
the variance as

σ2(t) ∼ exp(2λt). (11)

We compare the theoretical decay rate (Eq. (9)) with the numerically calculated
evolution of the variance (Eq. (11)) in Figure 2. As initial function, we used white, uni-
formly distributed noise. We find that the agreement between theory and simulations
is excellent.

3.2 Slow network approximation

Let us consider the situation in which the network time Tn is equal to the coupling
delay τ , and both are larger than the instantaneous decay rate λ−1

0 of the nodes,
λ−1

0 � Tn = τ . In this case, the coupling is constant during each delay interval,
and it is straightforward to integrate equation (3). We consider an arbitrary initial
function x0(t), t ∈ [−τ, 0]; decomposing into its Fourier components

x0(t) =
+∞∑

n=−∞
x0ne

iωnt , (12)

with ωn = 2πn/τ , one finds for the evolution of the nth mode during the first delay
interval
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Fig. 2. The evolution of the variance of the linear system for a connectivity alternating
between the topologies presented in Figure 1 is shown in black, the theoretical decay rate
(Eq. (9)) is shown for comparison (red dotdashed line). The agreement is excellent.
Parameters are N = 10, κ = 0.8, λ0 = 1, Tn = 0.001 and τ = 100.

ẋ1n(t) = −λ0x1n + κA1x0ne
iωnt , (13)

which is solved by

x1n(t) = e−λ0tx0n +
κ

λ0 + iωn

(
eiωnt − e−λ0t

)
A1x0n . (14)

Since the terms proportional to e−λ0t become negligible after a short transient of
order O(λ−1

0 ), we can approximate the general solution during the first delay interval
as x1(t) =

∑
n x1ne

iωnt, with

x1n =
κ

λ0 + iωn
A1x0n . (15)

Note that, for a constant network, this corresponds to the decay rates given by
pseudocontinuous spectrum equation (5).

Repeating this procedure for M time delays, and thus M alternations of the
topology, one finds a general solution xM (t) =

∑
n xMne

iωnt, with

xMn =

[
κ

λ0 + iωn

]M ( M∏
m=1

Am

)
x0n . (16)

Thus, we retrieve an “effective” adjacency matrix

Aeff =

(
M∏
m=1

Am

)1/M

. (17)

This prediction is verified numerically in Figure 3. Again, we simulated the
model equation (3) for ten nodes, with the coupling configuration alternating
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Fig. 3. Evolution of the variance of the linear system equation (3) the systems topologies
alternating between the topologies shown in Figure 1. The initial conditions were uniformly
distributed white noise. The theoretical decay rate (Eq. (9)) is shown for comparison (upper
red dotdashed line). The agreement is excellent. Parameters are N = 10, κ = 0.8, λ0 = 1,
Tn = τ = 100.

regularly between the networks shown in Figure 1. Our theory predicts a TDR from
equation (9), where in the slow network limit γeff is given by the eigenvalues of the
effective adjacency matrix equation (17). Figure 3 compares the variance of the nodes
for white noise initial conditions (black curve) with the theoretical prediction. Also
in this case the theoretical prediction provides an excellent approximation for the
numerical decay rates. The difference between the best linear fit of the simulations
and the theoretical decay rate is around 1%.

Comparing Figures 2 and 3, it is clear that the arithmetic mean network syn-
chronizes faster than the geometric mean network. This is the case for most pairs
of stochastic matrices. In the fast switching approximation typically the network
synchronizes faster than both topologies between which it alternates, and thus the
network fluctuations can be said to enhance synchronization. In contrast, one usually
finds a TDR that is in between the decay rates of both topologies in the slow network
limit. Thus, an appropriate choice of topologies allows to control the synchronisation
properties, also in the slow network limit.

3.3 Interplay of time scales

The linear model given in equation (3) is difficult to solve in the most general case.
Nonetheless, it is possible to find exact solutions for the special case that the delay
time τ is a multiple of the network time Tn. The details of this calculation are out-
lined in the Appendix. We summarize the main results in the following. As a first
simplification, we consider a regular alternation between two topologies, with respec-
tive adjacency matrices A1 and A2. Thus, the system repeats the cycle exactly every
2Tn. The results can be generalised to a periodic sequence of topologies A1, . . . , AM .
In the direct integration, we have assumed a constant initial function x(t) = x0 for
t < 0, motivated by the fact that for constant coupling, and in the slow network limit
(see Eqs. (5) and (16)) the zeroth Fourier mode is the least stable, and consequently,
determines the stability. Similarly to the slow network limit, it is then possible to
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Fig. 4. Connectivity of the two commuting adjacency matrices, that are used in the
numerical illustrations.

integrate equation (3) for consecutive delay intervals, concatenating the output of an
interval with the input for the next.

The evolution of the network depends on the interaction of the two coupling
topologies, as, during an interval of duration Tn with constant topology A1, the his-
tory term may depend on A1 and A2 or switch between both coupling configurations
at a certain point. Thus, we expect a periodic (parity) effect in the overall TDR with
respect to mod (τ, 2Tn). This is confirmed analytically, as we find a significantly
different evolution depending on whether the coupling delay τ is an even or odd
multiple of the network time Tn.

3.3.1 Asymptotic behavior for τ = 2MTn

If the coupling delay τ is an even multiple of the network time Tn, τ = 2MTn, M ∈ N,
our analytic calculation (outlined in Appendix A.1) indicates that the arithmetic
mean network, with an effective adjacency matrix A given by

A =
1

2
(A1 +A2) , (18)

determines the asymptotic decay rate, independent of Tn, even though the fast
network limit does not apply.

However, the time to reach this asymptotic decay rate increases with the network
time. While this decay rate is reached quickly in fast switching networks, the transient
time can be estimated as 4λ0Tnτ for slowly changing topologies. Thus, transient
dynamics can play an important role as the network time increases.

In particular, for relatively slow networks λ0Tn � 1, this initial transverse
exponential evolution rate is approximated by that of the most unstable network,
|γeff| = max(|γ1|, |γ2|), with γ1 and γ2 the respective maximal transverse eigenvalues
of A1 and A2. Hence, it is possible that, although the synchronized state is asymptot-
ically linearly stable, a perturbation may be initially amplified, and drive a nonlinear
system out of the basin of attraction of the synchronized state.

To illustrate our analytical results, we have simulated a network with an even
ratio of coupling delay τ and the network time Tn, shown in Figure 5. In order to
simplify comparison between the dynamics for even and odd ratios of time scales, we
consider a regular alternation between topologies with commuting adjacency matri-
ces. Our networks have 11 nodes, which evolution is modelled by equation (3), while
the alternating networks are chosen to be a clockwise and a counterclockwise unidi-
rectional ring, each coupled to its two nearest neighbors. A sketch of these topologies
are shown in Figure 4.
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Fig. 5. Evolution of the variance (in black) of the linear system equation (3) with the
systems topologies alternating between the topologies shown in Figure 4. The theoretical
decay rate (Eqs. (9), (18)) is shown for comparison (upper red dotdashed line). Parameters
are N = 11, κ = 0.8, λ0 = 1, Tn = 5, τ = 100.

We chose τ = 20Tn. For our choice of Tn = 5, one observes that the asymptotic
decay rate is only reached after ∼ 4λ0Tn = 20 delay intervals. The theoretical TDR is
given by equation (9), with γeff in the long time given being the maximal transverse
eigenvalue of the effective adjacency matrix (Eq. (18)). Once more, the agreement
between theoretical approximation and numerical simulations is good.

3.3.2 Asymptotic behavior for τ = (2M + 1)Tn

If the delay time τ is an odd multiple of the network time Tn, the topologies interfere
in a different way: the adjacency matrix A1 enters the history term multiplying the
coupling matrix A2.

If λ0Tn is small, we retrieve the fast switching approximation. For slower networks
λ0Tn � 1 it is only possible to compute the long-time evolution, under the condition
that both adjacency matrices commute. This calculation is outlined in Appendix A.2.
In this case, the asymptotic TDR is given by equation (9), with an effective eigenvalue
γeff given by

γeff =
γ̃

1 + 1
λ0Tn

(
ln[γ̃]− ln[(γ1 + γ2)/2]

) , (19)

with γ1 and γ2 the respective transverse eigenvalues of A1 and A2 along the same
eigenvector, and γ̃ =

√
γ1γ2.

Thus, the effective eigenvalue approaches the geometric mean eigenvalue γeff =√
γ1γ2 for large Tn. Note that the first order correction in equation (19) is propor-

tional to (λ0Tn)−1 for slow networks. In particular, in the case that |κγ̃| = λ0, this
dependency explains the power law behavior λ ∝ T−1

n demonstrated in Figure 9. In
contrast to the even ratio of time scales, there is no pronounced transient behavior, as
also in the slow network limit the initial decay rate is approximated by the geometric
mean network.
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Fig. 6. Evolution of the variance (black line) of the linear system equation (3) with the
systems topologies alternating between the topologies shown in Figure 4. The theoretical
decay rate (Eqs. (9), (19)) is shown for comparison (upper red dotdashed line). Parameters
are N = 11, κ = 0.8, λ0 = 1, Tn = 4, τ = 100.

We compare these theoretical results to numerical simulations in Figure 6. The
network equation (3) of 11 nodes, alternates regularly between the commuting topolo-
gies shown in Figure 4, with τ = 25Tn. We initialized our system again with white
noise. We find again excellent agreement between theory and simulations. Note the
considerably different TDRs in Figures 5 and 6, while the network times do not differ
much (Tn = 5 and Tn = 4, respectively), illustrating the sensitive dependence of the
system on the ratio of time scales.

4 Simulations for varying network time

To explore the synchronization properties in the full range of network times Tn,
we have performed numerical simulations of the aforementioned linear system
equation (3) with delayed interactions:

ẋ(t) = −λ0x(t) + κA(t)x(t− τ) .

In order to easily compare with the analytic results, we consider A(t) to be a dis-
continuous matricial process which proceeds through the alternation of two matrices,
A1 and A2, every Tn. The initial function in our simulations is constant x(t) = x0

for all t < 0 (in contrast to the numerical results shown in Figs. 2–6).
Unless otherwise mentioned, our network consists of three nodes, N = 3. Our first

choice for A1 and A2 is the cyclic choice, which is illustrated in Figure 7. The system
alternates between the two different cyclic directed graphs with three nodes, i.e.:

A1 =

(
0 1 0
0 0 1
1 0 0

)
, A2 =

(
0 0 1
1 0 0
0 1 0

)
. (20)

Note that these matrices commute and, moreover, they are inverse, i.e. A1A2 =
A2A1 = I.
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Fig. 7. Illustration of the two topologies giving rise to the cyclic matrices, A1 and A2.

In a second set of simulations, the commuting choice, we use the topologies A1

and A2 as follows:

A1 =

(
2/3 1/3 0
0 2/3 1/3

1/3 0 2/3

)
, A2 =

(
0 0 1
1 0 0
0 1 0

)
. (21)

In this case, all theoretical results can be applied, but the matrices are no longer
inverse.

A third possible choice is the random choice for A1 and A2. The random adja-
cency matrices employed in our simulations are constructed the following way: the
entries Aij with i 6= j are assigned a uniformly distributed random in the inter-
val [0, 1]. Afterwards, the adjacency matrices are row-normalized in order to respect
the stochasticity condition. For the employed examples, we check the matrices to
be non-commutative, and compute the spectral gap of the arithmetic and geometric
average.

Our simulations are based on a simple Euler integrator with a short enough time-
step (∆t = 10−2), endowed with a memory structure from where the required time-
delayed data can be obtained in an efficient way. The initial condition is chosen
randomly, each unit xi drawn from a uniform distribution in [0, 1], but, in contrast
to the simulations presented in the previous section, constant in the interval [−τ, 0].

Figure 8 shows a few illustrative histories when two cyclic matrices are alternated
along equation (3), using λ0 = κ = 1, τ = 100 and two values for the network switch-
ing time: Tn = 10 and Tn = 4, and a fixed random initial condition. The top panel
shows the evolution of the first node, x1(t). For Tn = 10 the delay time is an even
multiple of the network time, while for Tn = 4 it corresponds to an odd multiple. As
predicted by equation (18) for our choice of parameters, in all the cases shown, the
different components approach a synchronized state.

The second panel of Figure 8 shows the evolution of the standard deviation
between all components, along with our estimate of the TDR. The slower decay
for Tn = 4 results from the difference between τ being an odd and an even multiple
of Tn. Notice that the precise measurement of the decay rate is hindered by the strong
oscillations, whose periodicity is given by the interaction delay τ .

Estimating the TDR can be a complicated numerical task. In order to perform
this in a robust way, we have adopted the following algorithm: (a) a set of temporal
windows are selected within the simulation range, with random lengths and random
initial points, (b) for each of them, the TDR is estimated using a least-squares expo-
nential fit of σ versus time and (c) the average for the different outcomes provides
our best estimate for the TDR, while its deviation provides a natural approximation
to the error. The main reason to use this technique is that it tends to discard the
initial transient region, which is one of our biggest concerns. Yet, this technique is
still amenable to future improvements.
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Fig. 8. Two histories of equation (3) for the cyclic choice of A1 and A2, given by
equation (20). Top: evolution of a single component. Bottom: evolution of the deviation.
We use N = 3, λ0 = κ = 1, τ = 100, Tn = 4 and Tn = 10. The straight lines correspond to
the best exponential fit, allowing us to estimate the transversal decay rate.

Using this method, we have computed the TDR in a variety of cases. Our the-
oretical estimates for the TDR are provided by equation (9), where the value of
γeff corresponds to the arithmetic mean of the matrices in the fast-switching regime
λ0Tn � 1 and to the geometric mean in the slow-switching regime Tn ∼ τ .

The top panel of Figure 9 shows our estimates for the TDR as a function of net-
work time Tn, using τ = 100 and λ0 = κ = 1. Each panel is devoted to a different
choice for the A1 and A2 adjacency matrices: random (a), cyclic (b) and commuting
(c). The horizontal lines mark our theoretical estimate in the fast-switching (continu-
ous line) and slow-switching (dashed line) regimes. For the random case chosen (top
panel), where matrices A1 and A2 do not commute, we observe a good correspon-
dence to the fast switching limit for small values of Tn and a correspondence to the
slow network case for a range of network times Tn ≈ τ , but there is no general trend
visible. This may be due to the proximity of both limits.

In the commuting cases (central and bottom), however, there is a clear trend
visible. Again, for fast fluctuations the transverse stability is well approximated by
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Fig. 9. TDR of linear systems following equation (3) with N = 3, τ = 100, λ0 = κ = 1 for
three different systems topologies: (a) random; (b) cyclic choice, given by equation (20); the
inset shows the same data in a log–log plot, visualising a power law behavior TDR ∼ T−1

n

(c) commuting choice, given by equation (21). The horizontal lines mark our theoretical
estimates in the fast (dashed) and slow (continous) regimes. Top panel: TDR as a function
of Tn. Bottom panel: TDR as a function of M ≡ τ/Tn. Notice the strong parity oscillations.

the fast switching approximation. The TDR evolves in both cases towards the slow
network limit as Tn ∼ τ , the general trend is well described by the decay rate for odd
multiples (Eq. (19)). For the commuting and random choices, the estimate for the
decay rate decreases further as Tn � τ . This can be explained by the fact that the
dynamics operates on a time scale τ and thus adiabatically follows the temporary
network, which evolves on a slower time scale in this limit.

For our choice of parameters, the slow-switching regime in the cyclic case pro-
vides a TDR ∼ 0, as shown in our data. In this case, the decay from the fast to
the slow switching regimes corresponds approximately to a power-law, with TDR
λ ∼ T−1

n , as shown in the inset of Figure 9 (middle). This power law is explained
by the odd multiple decay rate. Indeed, combining equations (19) and (9), we can
deduce,
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Fig. 10. TDR as a function of M = τ/Tn for random choices of A1 and A2, using λ0 = κ = 1,
τ = 100. Notice the strong parity effect in all cases. For each case we have marked with an
horizontal dashed line the theoretical prediction for the TDR in the large M approximation
(arithmetic mean, fast switching) and with a continuous line the small M approximation
(geometric mean, slow switching).

λ ≈ 1

τ
ln

∣∣∣∣κγeff

λ0

∣∣∣∣
≈ 1

τ

(
ln

∣∣∣∣κγ̃λ0

∣∣∣∣− ln
[
1− 1

λ0Tn
ln[−1/2(γ1 + γ2)]

])

≈ −1

τ

ln 2

λ0Tn
, (22)

where we used γ̃ = −1, our parameter choice κ = λ0 = 1 and (λ0Tn)−1 is considered
small.

The bottom panel shows the same data, but with a restructured abscissa: the
new independent variable is τ/Tn ≡ M . In this case, the parity oscillations in the
fixed and the cyclic case are clearly visible. In particular, we observe synchronizing
resonances corresponding to the even values of M , in agreement to the theoretical
predictions. In the commuting case, the TDR at these resonances is particularly well
described by the arithmetic mean, also in agreement with the theory (Eq. (18)).
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In Figure 10, we check whether this evolution from arithmetic mean effective
topology in the fast network limit to geometric mean in the slow network limit holds
for larger networks with random (non-commuting) adjacency matrices, A1 and A2.
We simulated networks of sizes N = 20, N = 40 and N = 60 (see Fig. 10 from bottom
to top, respectively). Again, the fast and slow regime approximations to the TDR
are marked with dashed and continuous horizontal lines, respectively. We observe a
general, qualitative agreement between the theoretical prediction and the numerical
data, even though the matrices are non-commuting in this case. Moreover, we observe
the same strong parity oscillations.

5 Synchronization of delay-coupled chaotic maps

We illustrate our results for linear, time-continuous systems in a network of chaotic
maps. Similar as in previous work [38], we consider a time-varying network of N
delay-coupled Bernouilli maps with a discrete time evolution modelled by

x(t+ 1) = (1− ε)f(x(t)) + εA(t)f(x(t− τ)) , (23)

where x = (x1, . . . , xN ) is the vector of the Bernouilli unit states, f(x) = ax mod 1,
with a > 1. The network adjacency matrix A(t) belongs to a sequence {A1, A2, · · · } of
adjacency matrices randomly sampled from a Newmann–Watts small-world network
ensemble [43]. Instances of this ensemble are directed small-world networks similar to
the standard Watts–Strogatz networks, with a directed outside ring and each node
has a probability p of establishing a new “shortcut” link with a randomly chosen
node. The difference with standard small-world networks is that here shortcuts are
added without removing the corresponding ring links, thus keeping the outside ring
fixed and ensuring the connectivity of the ensemble networks.

Like in the preceding sections, the connectivity switches instantly every Tn time-
steps. The system’s evolution to our linear model can be compared to the time-
continous model equation (3), by identifying the (opposite) sub-Lyapunov exponent
and the internal decay rate. The coupling strength can simply be mapped,

λ0 = − ln |a(1− ε)| , κ = εa . (24)

Notice that for this system, the instantaneous decay rate λ0 is dependent on the
coupling strength ε. For chaotic maps, the TDR from the linear system coincides with
the so-called synchronization, or transverse Lyapunov exponent (SLE). That is, the
rate governing the evolution of small perturbations around the synchronized state,
xi(t) = x(t), ∀i. In a fixed network of Bernoulli units, the SLE is, similar the linear
system (Eq. (5)), computed as follows [44]:

λ =
1

τ
ln

∣∣∣∣ aεγ2

1− a(1− ε)

∣∣∣∣ , (25)

where γ2 is the adjacency matrix’ second largest eigenvalue.
We simulated the dynamics, equation (23), for several values of the coupling

strength ε, with a fixed p and for two network switching times: Tn = 100 and Tn = 10.
The comparison between the resulting numerical SLE and the effective SLE corre-
sponding to the fast and slow network approximations is plotted in Figure 11. The
first case, Tn = 100, corresponds to the slow regime conditions λ−1

0 � Tn = τ , and
the numerical SLE values follow the slow network approximation closely. The sec-
ond case, Tn = 10, crosses over from the fast network regime λ−1

0 � Tn at low ε
values to the slow network regime at values of ε ∼ 1. This is visible in the measured
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Fig. 11. Numerical SLE corresponding to the evolution of a time-varying delay-coupled
Bernouilli network with N = 40, τ = 100, a = 1.1, p = 0.5. Each point is the average over
20 simulated histories of 107 time-steps. The solid blue and dashed green lines correspond to
average SLE of the fast and slow effective networks, respectively, obtained as the arithmetic
and geometric ensemble mean matrices. We also plot the average SLE of the static case,
which is based on the mean transverse eigenvalue |γ2| of the ensemble. Both the slow and
fast effective SLE enlarge the synchronization region (SLE < 0) with respect to the static
case. The vertical dashed line marks the limit of the weak chaos region, ε > (a− 1)/a.

SLE values, which evolve from the fast effective SLE to the slow effective SLE as
ε increases.

6 Conclusion

We have developed an analytical formalism within the linearized limit in order to
understand synchronization phenomena in the case of delay-coupled networks with a
fluctuating topology, studied previously by us in [38].

Considering a regular alternation of the topology between different configura-
tions, we have studied both the case of fast and slow fluctuations. Based on the
master stability function approach, we derive the stability of a symmetric state based
on the alternation of topologies and the interplay between the timescales involved:
the internal timescale of the network nodes, the coupling delay, and the characteristic
fluctuation time of the network. In two different regimes, we have derived an “effec-
tive” coupling topology: when the network fluctuations are faster than the internal
time scale, the fast switching approximation can be extended to time-delay systems,
and we find that the effective network is given by the arithmetic average. When the
coupling delay and network fluctuation time are similarly large compared to the inter-
nal time scale of the network nodes, the effective network is given by the geometric
average over the different topologies.

As the network time varies between the fast and slow limit, we find analytically a
parity effect: the synchronization properties depend on the ratio of the delay time and
the network time. In particular, if the adjacency matrices of the different topologies
commute, one retrieves the fast network limit if the ratio between both time scales
is even, while for odd ratios the behavior evolves from the fast to the slow network
limit as the network time increases. Complementing these results with numerical
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simulations, we (broadly) recover this evolution from fast to slow network limit, from
arithmetic to geometric mean network with increasing network time. This trend is
visible for all network sizes, and for non-commuting and commuting topologies as
well, but the agreement with the analytical theory is better in the latter case, and for
larger networks. The parity effect is shown to be a universal feature for a regularly
alternating topology.

Finally, we compare our theoretical results to the synchronization properties of
an ensemble of delay-coupled chaotic maps. As the coupling strength, and thus the
internal time scale varies, we show that the synchronization boundaries shift between
the geometric and arithmetic means of the ensemble, confirming the linear theory. It is
worth stressing however, that the effective synchronization properties of a nonlinear
network might differ from this linear theory, due to long transient times and wild
oscillatory behavior in the linear regime.

Future extensions of the research might be the study of other network ensembles,
such as random Erdös-Rényi graphs, scale-free networks or even more complicated
graphs of multiplex type with further application to real world problems concerning
transport and energy issues or problems of supply networks in the general context of
“Smart cities”.
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Appendix A

We outline the analytical calculations leading to the results presented in
Section 3.3. We directly integrate equation (3),

ẋ(t) = −λ0x(t) + κA(t)x(t− τ) ,

using constant initial conditions x(t) = x0 for t < 0, and a regular alternation of the
coupling topology between adjacency matrices A1 and A2 after a network time Tn.
During the first delay interval, the dynamics then is modelled as

ẋ1(t) = −λ0x1(t) + κA1,2x0 . (A.1)

http://creativecommons.org/licenses/by/4.0
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After an initial transient of the order of O(λ−1
0 ), the resulting dynamics during

the delay interval is 2Tn-periodic: the system evolves exponentially between t = kTn
and t = (k + 1)Tn, when it changes direction. The values at these turning points
are denoted κ

λ0
x1A and κ

λ0
x1B respectively. During the first half cycle of its periodic

motion, the solution xA1(t) of equation (A.1) reads

xA1(t) =
κ

λ0

[
e−λ0tx1A + (1− e−λ0t)A1x0

]
. (A.2)

During the second half cycle of its periodic motion, the solution xB1(t) of
equation (A.1) reads

xB1(t) =
κ

λ0

[
e−λ0tx1B + (1− e−λ0t)A2x0

]
. (A.3)

Assuming a continuous periodic motion xB1(Tn) = κ
λ0
x1A and xA1(Tn) = κ

λ0
x1B ,

we find a solution for the turning points

x1A,B =
1

2

(
(A1 +A2)∓ 1− e−λ0Tn

1 + e−λ0Tn
(A1 −A2)

)
x0 . (A.4)

Note that in the limit λ0Tn � 1, we find as a leading order approximation

x1A = x1B =
1

2
(A1 +A2)x0 , (A.5)

which corresponds to the fast switching approximation. However, in order to find the
long term evolution, one needs to integrate over the next delay intervals.

A.1 Solution and convergence rate if τ = 2MTn

Let us focus on the case when τ is an even multiple of the network time Tn, τ = 2MTn,
with M ∈ N arbitrarily large. By writing equation (3) for the second delay interval
we obtain

ẋA,B2(t) = −λ0xA,B2(t) + κA1,2xA,B1(t) . (A.6)

Again, the system behaves periodically (after a few transients), now between

switching points κ2

λ2
0
x2A and κ2

λ2
0
x2B . We find for the two segments of the periodic

motion

xA,B2(t) = [
(
1− e−λ0t(1 + λ0t)

)
A2

1,2x0

+λ0te
−λ0tA1,2x1A,B + e−λ0tx2A,B . (A.7)

Using continuity, we can solve for the turning points x2A and x2B

x2A,B =
1

2

[(
1− e−λ0Tn(1 + λ0Tn)

)( A2
1 +A2

2

1− e−λ0Tn
∓ A2

1 −A2
2

1 + e−λ0Tn

)
x0

+ e−λ0Tnλ0Tn

(
A1x1A +A2x1B

1− e−λ0Tn
∓ A1x1A −A2x1B

1 + e−λ0T

)]
. (A.8)
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Repeating this procedure n times, we find the following recursive relation for the
turning points κn

λn
0
xnA,B in the nth delay interval,

xnA,B =
1

2

[(
1− e−λ0Tn

n−1∑
k=0

(λ0Tn)k

k!

)(
An1 +An2

1− e−λ0Tn
∓ An1 −An2

1 + e−λ0Tn

)
x0

+e−λ0Tn

n−1∑
k=1

(λ0Tn)k

k!

(
Ak1x(n−k)A +Ak2x(n−k)B

1− e−λ0Tn
∓
Ak1x(n−k)A −Ak2x(n−k)B

1 + e−λ0T

)]
.

(A.9)

For fast networks λ0Tn � 1, the fast switching approximation is recovered.
For slow networks λ0Tn > 1, one finds that the first term, proportional to

(1 − e−λ0Tn
∑n−1
k=0

(λ0Tn)k

k! ), is dominant during the first few delay intervals, lead-
ing to an initial decay rate given by the most unstable of the topologies A1 and A2.
However, after approximately 4λ0Tn delay intervals, this term becomes negligible. In
the long time limit, we find a different evolution, as equation (A.9) reduces to

xnA,B =
1

2

[
e−λ0Tn

n−1∑
k=1

(λ0Tn)k

k!

(
Ak1x(n−k)A +Ak2x(n−k)B

1− e−λ0Tn
∓
Ak1x(n−k)A −Ak2x(n−k)B

1 + e−λ0T

)]
.

(A.10)

Inserting a solution

xnA,nB = Anx0A,0B ,

equation (A.10) can be approximated as

xnA,B ≈
1

1− e−2λ0Tn

[
e−2λ0TnM1xnA + e−λ0TnM2xnB

]
, (A.11)

with

M1,2 = eλ0TnA1,2A
−1

− 1 .

After a little algebra, this leads to

e−2λ0TnM1M2 = (1− e−2λ0Tn − e−2λ0TnM1)(1− e−2λ0Tn − e−2λ0TnM2) (A.12)

= 1− e−2λ0Tn − e−2λ0Tn(M1 +M2) .

Inserting the expressions for M1 and M2, we find

e−2λ0Tn(eλ0TnA1A
−1

− 1)(eλ0TnA2A
−1

− 1)

= 1− e−2λ0Tn − e−2λ0Tn(eλ0TnA1A
−1

+ eλ0TnA2A
−1

− 2)

⇒ e−2λ0Tneλ0TnA1A
−1

eλ0TnA2A
−1

= I . (A.13)

The average network, equation (18), solves equation (A.13).
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A.2 Solution and convergence rate if τ = (2M + 1)Tn

In this case, the modelling equations during the second delay interval read

ẋA,B2(t) = −λ0xA,B2(t) + κA1,2xB,A1(t) . (A.14)

Note that, in the delayed input term xA1(t) and xB1(t) have switched role, com-
pared to the even multiple case (Eq. (A.6)). The resulting turning points x2A and
x2B are given by

x2A,B =
1

2

[(
1− e−λ0Tn(1 + λ0Tn)

)(A1A2 +A2A1

1− e−λ0Tn
∓ A1A2 −A2A1

1 + e−λ0Tn

)
x0

+ e−λ0Tnλ0Tn

(
A2x1A +A1x1B

1− e−λ0Tn
∓ A2x1A −A1x1B

1 + e−λ0T

)]
. (A.15)

In the nth delay interval (n even), the turning points κn

λn
0
xnA,nB are given by

xnA,B =
1

2

(
1− e−λ0Tn

n−1∑
k=0

(λ0Tn)k

k!

)(
(A1A2)n/2 + (A2A1)n/2

1− e−λ0Tn
±

(A1A2)n/2 − (A2A1)n/2

1 + e−λ0Tn

)
x0

+
1

2
e−λ0Tn

(n−2)/2∑
k=0

(λ0Tn)2k+1

(2k + 1)!

(
A2(A1A2)kx(n−2k−1)A +A1(A2A1)kx(n−2k−1)B

1− e−λ0T

±
A2(A1A2)kx(n−2k−1)A −A1(A2A1)kx(n−2k−1)B

1 + e−λ0T

)

+

(n−2)/2∑
k=1

(λ0Tn)2k

(2k)!

(
(A1A2)kx(n−2k)A + (A2A1)kx(n−2k)B

1− e−λ0T

±
(A2A1)kx(n−2k)B − (A1A2)kx(n−2k)A

1 + e−λ0T

)]
. (A.16)

If the matrices A1 and A2 commute, it is possible to find an asymptotic solution of
equation (A.16) in the slow network limit. Evaluating equation (A.16) along a trans-
verse eigenvector x of the two coupling matrices, and taking the limit e−λ0Tn → 0,
we find the simplified form

xnA,B = e−λ0Tn

(n−2)/2∑
k=0

(λ0Tn)2k+1

(2k + 1)!
γ2,1γ̃

2kx(n−2k−1)A,B

+

(n−2)/2∑
k=1

(λ0Tn)2k

(2k)!
γ̃2kx(n−2k)B,A

 , (A.17)

with γ1 and γ2 the respective eigenvalues of A1 and A2 and γ̃ =
√
γ1γ2. Inserting a

solution

xnA,nB = γnx0A,0B ,
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in equation (A.17), we find in the long time limit

xnA,B ≈ e−λ0Tn

[
γ2,1

γ̃
sinh(λ0Tnγ̃/γ)x0A,0B

+(cosh(λ0Tnγ̃/γ)− 1)x0B,0A

]
. (A.18)

Assuming Re(γ/γ̃) > 0, in the limit of e−λ0Tn → 0 this simplifies to

x0A,0B =
1

2
eλ0Tn(γ̃/γ−1)

[
γ1,2

γ̃
x0A,0B + x0B,0A

]
, (A.19)

which is solved by

γ =
γ̃

1 + 1
λ0Tn

(ln[γ̃]− ln[(γ1 + γ2)/2])
. (A.20)

Assuming Re(γ/γ̃) < 0, in the limit of e−λ0Tn → 0 we find a solution

γ =
−γ̃

1 + 1
λ0Tn

(ln[γ̃]− ln[−(γ1 + γ2)/2])
. (A.21)

Thus, one finds the slowest decay rate when choosing the sign of γ̃ such that its
argument is closest to the argument of γ1 + γ2.
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