94 research outputs found

    Giant magneto-birefringence effect and tuneable colouration of 2D crystals' suspensions

    Full text link
    One of the long sought-after goals in manipulation of light through light-matter interactions is the realization of magnetic-field-tuneable colouration, so-called magneto-chromatic effect, which holds great promise for optical, biochemical and medical applications due to its contactless and non-invasive nature. This goal can be achieved by magnetic-field controlled birefringence, where colours are produced by the interference between phase-retarded components of transmitted polarised light. Thus far birefringence-tuneable coloration has been demonstrated using electric field, material chirality and mechanical strain but magnetic field control remained elusive due to either weak magneto-optical response of transparent media or low transmittance to visible light of magnetically responsive media, such as ferrofluids. Here we demonstrate magnetically tuneable colouration of aqueous suspensions of two-dimensional cobalt-doped titanium oxide which exhibit an anomalously large magneto-birefringence effect. The colour of the suspensions can be tuned over more than two wavelength cycles in the visible range by moderate magnetic fields below 0.8 T. We show that such giant magneto-chromatic response is due to particularly large phase retardation (>3 pi) of the polarised light, which in its turn is a combined result of a large Cotton-Mouton coefficient (three orders of magnitude larger than for known liquid crystals), relatively high saturation birefringence (delta n = 2 x 10^-4) and high transparency of our suspensions to visible light. The work opens a new avenue to achieve tuneable colouration through engineered magnetic birefringence and can readily be extended to other magnetic 2D nanocrystals. The demonstrated effect can be used in a variety of magneto-optical applications, including magnetic field sensors, wavelength-tuneable optical filters and see-through printing.Comment: 10 pages, 4 figures. Nature Communications, 2020, Accepte

    Elliptic logarithms, diophantine approximation and the Birch and Swinnerton-Dyer conjecture

    Get PDF
    Most, if not all, unconditional results towards the abc-conjecture rely ultimately on classical Baker's method. In this article, we turn our attention to its elliptic analogue. Using the elliptic Baker's method, we have recently obtained a new upper bound for the height of the S-integral points on an elliptic curve. This bound depends on some parameters related to the Mordell-Weil group of the curve. We deduce here a bound relying on the conjecture of Birch and Swinnerton-Dyer, involving classical, more manageable quantities. We then study which abc-type inequality over number fields could be derived from this elliptic approach.Comment: 20 pages. Some changes, the most important being on Conjecture 3.2, three references added ([Mas75], [MB90] and [Yu94]) and one reference updated [BS12]. Accepted in Bull. Brazil. Mat. So

    On Coloring Resilient Graphs

    Full text link
    We introduce a new notion of resilience for constraint satisfaction problems, with the goal of more precisely determining the boundary between NP-hardness and the existence of efficient algorithms for resilient instances. In particular, we study rr-resiliently kk-colorable graphs, which are those kk-colorable graphs that remain kk-colorable even after the addition of any rr new edges. We prove lower bounds on the NP-hardness of coloring resiliently colorable graphs, and provide an algorithm that colors sufficiently resilient graphs. We also analyze the corresponding notion of resilience for kk-SAT. This notion of resilience suggests an array of open questions for graph coloring and other combinatorial problems.Comment: Appearing in MFCS 201

    Giant magneto-birefringence effect and tuneable colouration of 2D crystal suspensions

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2020-02-13, accepted 2020-07-03, registration 2020-07-10, pub-electronic 2020-07-24, online 2020-07-24, collection 2020-12Publication status: PublishedAbstract: One of the long-sought-after goals in light manipulation is tuning of transmitted interference colours. Previous approaches toward this goal include material chirality, strain and electric-field controls. Alternatively, colour control by magnetic field offers contactless, non-invasive and energy-free advantages but has remained elusive due to feeble magneto-birefringence in conventional transparent media. Here we demonstrate an anomalously large magneto-birefringence effect in transparent suspensions of magnetic two-dimensional crystals, which arises from a combination of a large Cotton-Mouton coefficient and relatively high magnetic saturation birefringence. The effect is orders of magnitude stronger than those previously demonstrated for transparent materials. The transmitted colours of the suspension can be continuously tuned over two-wavelength cycles by moderate magnetic fields below 0.8 T. The work opens a new avenue to tune transmitted colours, and can be further extended to other systems with artificially engineered magnetic birefringence

    30 years of collaboration

    Get PDF
    We highlight some of the most important cornerstones of the long standing and very fruitful collaboration of the Austrian Diophantine Number Theory research group and the Number Theory and Cryptography School of Debrecen. However, we do not plan to be complete in any sense but give some interesting data and selected results that we find particularly nice. At the end we focus on two topics in more details, namely a problem that origins from a conjecture of RĂ©nyi and ErdƑs (on the number of terms of the square of a polynomial) and another one that origins from a question of Zelinsky (on the unit sum number problem). This paper evolved from a plenary invited talk that the authors gaveat the Joint Austrian-Hungarian Mathematical Conference 2015, August 25-27, 2015 in GyƑr (Hungary)

    Approximation Schemes for Multi-Budgeted Independence Systems

    Full text link
    A natural way to deal with multiple, partially conflicting objectives is turning all the objectives but one into budget constraints. Some classical optimization problems, such as spanning tree and forest, shortest path, (perfect) matching, independent set (basis) in a matroid or in the intersection of two matroids, become NP-hard even with one budget constraint. Still, for most of these problems efficient deterministic and randomized approximation schemes are known. For two or more bud-gets, typically only multi-criteria approximation schemes are available, which return slightly infeasible solutions. Not much is known however for strict budget constraints: filling this gap is the main goal of this paper. It is not hard to see that the above-mentioned problems whose solution sets do not correspond to independence systems are inapproximable al-ready for two budget constraints. For the remaining problems, we present approximation schemes for a constant number k of budget constraints using a variety of techniques: i) we present a simple and powerful mech-anism to transform multi-criteria approximation schemes into pure ap-proximation schemes. This leads to deterministic and randomized ap-proximation schemes for various of the above-mentioned problems; ii) we show that points in low-dimensional faces of any matroid polytope are almost integral, an interesting result on its own. This gives a de-terministic approximation scheme for k-budgeted matroid independent set; iii) we present a deterministic approximation scheme for 2-budgeted matching. The backbone of this result is a purely topological property of curves in R2

    “At ‘Amen Meals’ It’s Me and God” Religion and Gender: A New Jewish Women’s Ritual

    Get PDF
    New ritual practices performed by Jewish women can serve as test cases for an examination of the phenomenon of the creation of religious rituals by women. These food-related rituals, which have been termed ‘‘amen meals’’ were developed in Israel beginning in the year 2000 and subsequently spread to Jewish women in Europe and the United States. This study employs a qualitative-ethnographic methodology grounded in participant-observation and in-depth interviews to describe these nonobligatory, extra-halakhic rituals. What makes these rituals stand out is the women’s sense that through these rituals they experience a direct con- nection to God and, thus, can change reality, i.e., bring about jobs, marriages, children, health, and salvation for friends and loved ones. The ‘‘amen’’ rituals also create an open, inclusive woman’s space imbued with strong spiritual–emotional energies that counter the women’s religious marginality. Finally, the purposes and functions of these rituals, including identity building and displays of cultural capital, are considered within a theoretical framework that views ‘‘doing gender’’ and ‘‘doing religion’’ as an integrated experience
    • 

    corecore