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Abstract. Some diophantine equations related to the soliton solutions of the
Korteweg-de Vries equation are resolved. The main tools are the connec-

tion with Bernoulli polynomials and the application of certain computational

number-theoretical results.

1. introduction

In the paper [12] Fairlie and Veselov obtained a relation of the Bernoulli poly-
nomials with the theory of the Korteweg-de Vries (KdV) equation

ut − 6uux + uxxx = 0.

This equation has infinitely many conservation laws of the form

Im[u] =
∫ ∞
−∞

Pm(u, ux, uxx, . . . , um)dx,

where Pm are some polynomials of the function u and its x-derivatives up to order
m, see [18]. For example,

I−1[u] =
∫ ∞
−∞

udx, I0[u] =
∫ ∞
−∞

u2dx, I1[u] =
∫ ∞
−∞

(u2
x + 2u3)dx

and

I2[u] =
∫ ∞
−∞

(u2
xx + 10uu2

x + 5u4)dx.

The KdV equation possesses a remarkable family of so-called n-soliton solutions
corresponding to the initial profile un(x, 0) = −2n(n + 1)sech2x. For some recent
generalizations and applications of the Korteweg-de Vries equation we refer to [15],
[14] and [22] and the references given therein.

Using the spectral theory of Schrödinger operators, see [30], Fairlie and Veselov
[12] proved that

Ik[un] =
(−1)k4k+2

2k + 3

n∑
i=1

i2k+3

for k = −1, 0, 1, . . ..
Now let k 6= l be fixed integers with k, l ∈ {−1, 0, 1, 2, . . .} and suppose that

|Ik[un]| = |Il[um]|.
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One can ask that for given k and l, how often can these integrals be equal? In other
words, what is the cardinality of the set of solutions m,n to the equation

(1)
4k

2k + 3

n∑
i=1

i2k+3 =
4l

2l + 3

m∑
i=1

i2l+3,

where k and l are fixed distinct integers?
Applying some recent results by Rakaczki, see [23] and [24], it is not too hard

to give some ineffective and effective finiteness statements for the solutions m and
n to equation (1). However, the purpose of this note is to resolve (1) for certain
values of m and n including an infinite family of the parameters.

Theorem 1. For k = −1 and l ∈ {0, 1, 2, 3}, equation (1) has only one solution,
namely (l,m, n) = (0, 24, 5).

Theorem 2. Assume that k = 0 and l is a positive integer such that 2l + 3 is
prime. Then (1) has no solution in positive integers m and n.

2. auxiliary results

In our first lemma we summarize some classical properties of Bernoulli polyno-
mials. For the proofs of these results we refer to [21].

Lemma 1. Let Bj(X) denote the jth Bernoulli polynomial and Bj = Bj(0), j =
1, 2, . . .. Further, let Dj be the denominator of Bj. Then we have

(A) Bj(X) = Xn +
∑j
i=1

(
j
i

)
BiX

j−i,

(B) Sj(x) = 1j + 2j + . . .+ (x− 1)j = 1
j+1 (Bj+1(x)−Bj+1),

(C) B1 = − 1
2 , B2j+1 = 0, j = 1, 2, . . .

(D) (von Staudt-Clausen) D2j =
∏
p−1|2j,p prime p

(E) X2(X − 1)2|B2j(X)−B2j(in Q[X]).
(F) Bj(X) = (−1)jBj(1−X).

Consider the hyperelliptic curve

(2) C : y2 = F (x) := x5 + b4x
4 + b3x

3 + b2x
2 + b1x+ b0,

where bi ∈ Z. Let α be a root of F and J(Q) be the Jacobian of the curve C. We
have that

x− α = κξ2

where κ, ξ ∈ K = Q(α) and κ comes from a finite set. By knowing the Mordell-Weil
group of the curve C it is possible to provide a method to compute such a finite set.
To each coset representative

∑m
i=1(Pi −∞) of J(Q)/2J(Q) we associate

κ =
m∏
i=1

(
γi − αd2

i

)
,

where the set {P1, . . . , Pm} is stable under the action of Galois, all y(Pi) are non-
zero and x(Pi) = γi/d

2
i where γi is an algebraic integer and di ∈ Z≥1. If Pi, Pj are

conjugate then we may suppose that di = dj and so γi, γj are conjugate. We have
the following lemma (Lemma 3.1 in [8]).

Lemma 2. Let K be a set of κ values associated as above to a complete set of coset
representatives of J(Q)/2J(Q). Then K is a finite subset of OK and if (x, y) is an
integral point on the curve (2) then x− α = κξ2 for some κ ∈ K and ξ ∈ K.
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As an application of his theory of lower bounds for linear forms in logarithms,
Baker [1] gave an explicit upper bound for the size of integral solutions of hyperel-
liptic curves. This result has been improved by many authors (see e.g. [2], [3], [4],
[9], [20], [26], [27] and [29]).

In [8] an improved completely explicit upper bound were proved combining ideas
from [9], [10], [11], [16], [17], [19], [29], [28]. Now we will state the theorem which
gives the improved bound. We introduce some notation. Let K be a number field
of degree d and let r be its unit rank and R its regulator. For α ∈ K we denote by
h(α) the logarithmic height of the element α. Let

∂K =


log 2
d if d = 1, 2,

1
4

(
log log d

log d

)3

if d ≥ 3

and

∂′K =
(

1 +
π2

∂2
K

)1/2

.

Define the constants

c1(K) =
(r !)2

2r−1dr
, c2(K) = c1(K)

(
d

∂K

)r−1

,

c3(K) = c1(K)
dr

∂K
, c4(K) = rdc3(K),

c5(K) =
rr+1

2∂r−1
K

.

Let

∂L/K = max
{

[L : Q] , [K : Q]∂′K ,
0.16[K : Q]

∂K

}
,

where K ⊆ L are number fields. Define

C(K,n) := 3 · 30n+4 · (n+ 1)5.5 d2 (1 + log d).

The following result will be used to get an upper bound for the size of the integral
solutions of our equations. It is Theorem 3 in [8].

Lemma 3. Let α be an algebraic integer of degree at least 3 and κ be an integer
belonging to K. Denote by α1, α2, α3 distinct conjugates of α and by κ1, κ2, κ3

the corresponding conjugates of κ. Let

K1 = Q(α1, α2,
√
κ1κ2), K2 = Q(α1, α3,

√
κ1κ3), K3 = Q(α2, α3,

√
κ2κ3),

and
L = Q(α1, α2, α3,

√
κ1κ2,

√
κ1κ3).

In what follows R stands for an upper bound for the regulators of K1, K2 and K3

and r denotes the maximum of the unit ranks of K1, K2, K3. Let

c∗j = max
1≤i≤3

cj(Ki)

and
N = max

1≤i,j≤3

∣∣NormQ(αi,αj)/Q(κi(αi − αj))
∣∣2

and

H∗ = c∗5R+
logN

min1≤i≤3[Ki : Q]
+ h(κ).

Define

A∗1 = 2H∗ · C(L, 2r + 1) · (c∗1)2∂L/L ·
(

max
1≤i≤3

∂L/Ki

)2r

·R2,
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and
A∗2 = 2H∗ +A∗1 +A∗1 log{(2r + 1) ·max{c∗4, 1}}.

If x ∈ Z\{0} satisfies x− α = κξ2 for some ξ ∈ K then

log|x| ≤ 8A∗1 log(4A∗1) + 8A∗2 +H∗ + 20 log 2 + 13 h(κ) + 19 h(α).

To obtain a lower bound for the possible unknown integer solutions we are going
to use the so-called Mordell-Weil sieve. The Mordell-Weil sieve has been successfully
applied to prove the non-existence of rational points on curves (see e.g. [5], [7], [13]
and [25]).

Let C/Q be a smooth projective curve (in our case a hyperelliptic curve) of
genus g ≥ 2. Let J be its Jacobian. We assume the knowledge of some rational
point on C, so let D be a fixed rational point on C and let  be the corresponding
Abel-Jacobi map:

 : C → J, P 7→ [P −D].

Let W be the image in J of the known rational points on C and D1, . . . , Dr gene-
rators for the free part of J(Q). By using the Mordell–Weil sieve we are going to
obtain a very large and smooth integer B such that

(C(Q)) ⊆W +BJ(Q).

Let
φ : Zr → J(Q), φ(a1, . . . , ar) =

∑
aiDi,

so that the image of φ is the free part of J(Q). The variant of the Mordell-Weil
sieve explained in [8] provides a method to obtain a very long decreasing sequence
of lattices in Zr

BZr = L0 ) L1 ) L2 ) · · · ) Lk

such that
(C(Q)) ⊂W + φ(Lj)

for j = 1, . . . , k.
The next lemma [8, Lemma 12.1] gives a lower bound for the size of rational

points whose image are not in the set W.

Lemma 4. Let W be a finite subset of J(Q) and L be a sublattice of Zr. Suppose
that (C(Q)) ⊂W + φ(L). Let µ1 be a lower bound for h− ĥ and

µ2 = max
{√

ĥ(w) : w ∈W
}
.

Denote by M the height-pairing matrix for the Mordell–Weil basis D1, . . . , Dr and
let λ1, . . . , λr be its eigenvalues. Let

µ3 = min
{√

λj : j = 1, . . . , r
}

and m(L) the Euclidean norm of the shortest non-zero vector of L. Then, for any
P ∈ C(Q), either (P ) ∈W or

h((P )) ≥ (µ3m(L)− µ2)2 + µ1.

The following lemma plays a crucial role in the proof of Theorem 1

Lemma 5. The integral solutions of the equation

(3) C : Y 2 = X(X + 20)2(X2 + 10X + 400) + 140625

are
(X,Y ) ∈ {(0,±375), (−20,±375)}.
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Proof of Lemma 5. Let J(Q) be the Jacobian of the genus two curve (3). Using
MAGMA we determine a Mordell-Weil basis which is given by

D1 = (0, 375)−∞,
D2 = (−20, 375)−∞.

Let f = x(x+20)2(x2 +10x+400)+140625 and α be a root of f . We will choose
for coset representatives of J(Q)/2J(Q) the linear combinations

∑2
i=1 niDi, where

ni ∈ {0, 1}. Then
x− α = κξ2,

where κ ∈ K and K is constructed as described in Lemma 2. We have that K =
{1,−α,−20− α, α(α+ 20)}. By local arguments it is possible to restrict the set K
further (see e.g. [5], [6]). In our case one can eliminate

α(α+ 20)

by local computations in Q3. We apply Lemma 3 to get a large upper bound for
log |x| in the remaining cases. A MAGMA code were written to obtain the bounds
appeared in [8], it can be found at
http://www.warwick.ac.uk/∼maseap/progs/intpoint/bounds.m. We obtain that
these bounds are as follows

κ bound for log |x|
1 6.27 · 10307

−α 4.48 · 10668

−20− α 1.89 · 10612

The set of known rational points on the curve (3) is {∞, (0,±375), (−20,±375)}.
Let W be the image of this set in J(Q). Applying the Mordell-Weil implemented
by Bruin and Stoll and explained in [8] we obtain that (C(Q)) ⊆ W + BJ(Q),
where

B = 28 · 53 · 72 · 112 · 132 · 172 · 19 · 31 · 37 · 41 · 43 · 53 · 59 · 71 · 79 · 83 · 89

that is
B = 46128223306000188203435897312000.

Now we use an extension of the Mordell-Weil sieve due to Samir Siksek to obtain
a very long decreasing sequence of lattices in Z2. After that we apply Lemma 4 to
obtain a lower bound for possible unknown rational points. We get that if (x, y) is
an unknown integral point, then

log |x| ≥ 2.216448× 10782.

This contradicts the bound for log |x| we obtained by Baker’s method. �

3. Proofs of the Theorems

Proof of Theorem 1. For k = −1 and l ∈ {0, 1, 2, 3} we have the diophantine equa-
tions

(4)
n(n+ 1)

2
=
m2(m+ 1)2

3
,

(5)
n(n+ 1)

8
=

1
15
z2(2z − 1) with z = m(m+ 1),

(6)
n(n+ 1

8
=

2
21
z2(3z2 − 4z + 2) with z = m(m+ 1),
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and

(7)
1
4

n∑
i=1

i =
64
9

m∑
i=1

i9,

respectively. One can see that the first three equations are elliptic diophatine
equations, thus using the program package MAGMA, subroutines IntegralPoints
or IntegralQuarticPoints is just a straightforward calculation to solve them. In
these cases the unique solution is (l,m, n) = (0, 24, 5). The forth equation can be
written as follows

(2n+ 1)2 =
128
45

(m2 +m− 1)(m2 +m)2(2m4 + 4m3 −m2 − 3m+ 3) + 1.

So we easily obtain a hyperelliptic curve

Y 2 = X(X + 20)2(X2 + 10X + 400) + 140625,

where Y = 375(2n + 1) and X = 20m2 + 20m − 20. By Lemma 5 we have that
X = 0 or -20. Therefore we have that m ∈ {−1, 0}, a contradiction and there is no
solution in positive integers of (7). �

Proof of Theorem 2. Now k = 0 and p = 2l + 3 ≥ 3 is a prime. From (1) we get

p · n2(n+ 1)2 = 3 · 4l+1(1p + 2p + . . .+mp).

Let m and n be an arbitrary but fixed solution. An elementary numbertheoretical
argument and Lemma 1 yield that p|m(m+ 1) and

ordp

(
1p + 2p + . . .+mp

m2(m+ 1)2

)
= ordp

Bp+1(m+ 1)−Bp+1

m2(m+ 1)2
6= 0.

Suppose that p|m and let d the smallest positive integer such that Bp+1(m+ 1)−
Bp+1 = 1

df(m)m2(m + 1)2, and f(X) ∈ Z[X]. Since
(
p+1
k

)
is divisible by p for

k = 2, . . . , p− 1 and B1 = −1/2 we have that p is not a divisor of d. The constant
term of the polynomial f(X) is d

(
p+1
p−1

)
Bp−1 and, by von Staudt-Clausen theorem,

it is not divisible by p. On the other hand, p is a divisor of m and f(m), we have
a contradiction. If p|m+ 1 the we can repeat the previous argument using the fact
f(X) = f(−X − 1), cf. Lemma 1.

�
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[10] Y. Bugeaud and K. Győry. Bounds for the solutions of unit equations. Acta Arith., 74 (1996),
67–80.

[11] Y. Bugeaud, M. Mignotte and S. Siksek. Classical and modular approaches to exponential

Diophantine equations. I. Fibonacci and Lucas perfect powers. Ann. of Math. (2), 163 (2006),
969–1018.

[12] D. B. Fairlie and A. P. Veselov. Faulhaber and Bernoulli polynomials and solitons. Physica

D, 152–153 (2001), 47–50.
[13] E. V. Flynn. The Hasse principle and the Brauer-Manin obstruction for curves. Manuscripta

Math., 115 (2004), 437–466.

[14] X-L. Gai, Y-T. Gao, X. Yu and L. Wang. Painlevé property, auto-Bäcklund transformation
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