239 research outputs found

    Elemental abundances of low-mass stars in nearby young associations: AB Doradus, Carina Near, and Ursa Major

    Full text link
    We present stellar parameters and abundances of 11 elements (Li, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, and Zn) of 13 F6-K2 main-sequence stars in the young groups AB Doradus, Carina Near, and Ursa Major. The exoplanet-host star \iota Horologii is also analysed. The three young associations have lithium abundance consistent with their age. All other elements show solar abundances. The three groups are characterised by a small scatter in all abundances, with mean [Fe/H] values of 0.10 (\sigma=0.03), 0.08 (\sigma=0.05), and 0.01 (\sigma=0.03) dex for AB Doradus, Carina Near, and Ursa Major, respectively. The distribution of elemental abundances appears congruent with the chemical pattern of the Galactic thin disc in the solar vicinity, as found for other young groups. This means that the metallicity distribution of nearby young stars, targets of direct-imaging planet-search surveys, is different from that of old, field solar-type stars, i.e. the typical targets of radial velocity surveys. The young planet-host star \iota Horologii shows a lithium abundance lower than that found for the young association members. It is found to have a slightly super-solar iron abundance ([Fe/H]=0.16+-0.09), while all [X/Fe] ratios are similar to the solar values. Its elemental abundances are close to those of the Hyades cluster derived from the literature, which seems to reinforce the idea of a possible common origin with the primordial cluster.Comment: 16 pages, 2 figures, 6 tables. Accepted for publication in MNRA

    CAOS spectroscopy of Am stars Kepler targets

    Get PDF
    The {\it Kepler} space mission and its {\it K2} extension provide photometric time series data with unprecedented accuracy. These data challenge our current understanding of the metallic-lined A stars (Am stars) for what concerns the onset of pulsations in their atmospheres. It turns out that the predictions of current diffusion models do not agree with observations. To understand this discrepancy, it is of crucial importance to obtain ground-based spectroscopic observations of Am stars in the {\it Kepler} and {\it K2} fields in order to determine the best estimates of the stellar parameters. In this paper, we present a detailed analysis of high-resolution spectroscopic data for seven stars previously classified as Am stars. We determine the effective temperatures, surface gravities, projected rotational velocities, microturbulent velocities and chemical abundances of these stars using spectral synthesis. These spectra were obtained with {\it CAOS}, a new instrument recently installed at the observing station of the Catania Astrophysical Observatory on Mt. Etna. Three stars have already been observed during quarters Q0-Q17, namely: HD\,180347, HD\,181206, and HD\,185658, while HD\,43509 was already observed during {\it K2} C0 campaign. We confirm that HD\,43509 and HD\,180347 are Am stars, while HD 52403, HD\,50766, HD\,58246, HD\,181206 and HD\,185658 are marginal Am stars. By means of non-LTE analysis, we derived oxygen abundances from O{\sc I}λ\lambda7771--5{\AA} triplet and we also discussed the results obtained with both non-LTE and LTE approaches.Comment: accepted in MNRAS main journal 13 pages, 11 figures, 3 tables. arXiv admin note: text overlap with arXiv:1404.095

    Starspot Jitter in Photometry, Astrometry and Radial Velocity Measurements

    Get PDF
    Analytical relations are derived for the amplitude of astrometric, photometric and radial velocity perturbations caused by a single rotating spot. The relative power of the star spot jitter is estimated and compared with the available data for κ1\kappa^1 Ceti and HD 166435, as well as with numerical simulations for κ1\kappa^1 Ceti and the Sun. A Sun-like star inclined at i=90\degr at 10 pc is predicted to have a RMS jitter of 0.087 \uas in its astrometric position along the equator, and 0.38 m s1^{-1} in radial velocities. If the presence of spots due to stellar activity is the ultimate limiting factor for planet detection, the sensitivity of SIM Lite to Earth-like planets in habitable zones is about an order of magnitude higher that the sensitivity of prospective ultra-precise radial velocity observations of nearby stars.Comment: accepted in ApJ Letters, Nov. 200

    Chemical composition of the Taurus-Auriga association

    Full text link
    The Taurus-Auriga association is perhaps the most famous prototype of a low-mass star forming region, surveyed at almost all wavelengths. Unfortunately, like several other young clusters/associations, this T association lacks an extensive abundance analysis determination. We present a high-resolution spectroscopic study of seven low-mass members of Taurus-Auriga, including both weak-lined and classical T Tauri stars designed to help robustly determine their metallicity. After correcting for spectral veiling, we performed equivalent width and spectral synthesis analyses using the GAIA set of model atmospheres and the 2002 version of the code MOOG. We find a solar metallicity, obtaining a mean value of [Fe/H]=0.01±-0.01\pm0.05. The α\alpha-element Si and the Fe-peak one Ni confirm a solar composition. Our work shows that the dispersion among members is well within the observational errors at variance with previous claims. As in other star forming regions, no metal-rich members are found, reinforcing the idea that old planet-host stars form in the inner part of the Galactic disc and subsequently migrate.Comment: In press on A\&

    X-Shooter spectroscopy of young stellar objects: IV -- Accretion in low-mass stars and sub-stellar objects in Lupus

    Full text link
    We present X-Shooter/VLT observations of a sample of 36 accreting low-mass stellar and sub-stellar objects (YSOs) in the Lupus star forming region, spanning a range in mass from ~0.03 to ~1.2Msun, but mostly with 0.1Msun < Mstar < 0.5Msun. Our aim is twofold: firstly, analyse the relationship between excess-continuum and line emission accretion diagnostics, and, secondly, to investigate the accretion properties in terms of the physical properties of the central object. The accretion luminosity (Lacc), and from it the accretion rate (Macc), is derived by modelling the excess emission, from the UV to the near-IR, as the continuum emission of a slab of hydrogen. The flux and luminosity (Ll) of a large number of emission lines of H, He, CaII, etc., observed simultaneously in the range from ~330nm to 2500nm, were computed. The luminosity of all the lines is well correlated with Lacc. We provide empirical relationships between Lacc and the luminosity of 39 emission lines, which have a lower dispersion as compared to previous relationships in the literature. Our measurements extend the Pab and Brg relationships to Lacc values about two orders of magnitude lower than those reported in previous studies. We confirm that different methodologies to measure Lacc and Macc yield significantly different results: Ha line profile modelling may underestimate Macc by 0.6 to 0.8dex with respect to Macc derived from continuum-excess measures. Such differences may explain the likely spurious bi-modal relationships between Macc and other YSOs properties reported in the literature. We derive Macc in the range 2e-12 -- 4e-8 Msun/yr and conclude that Macc is proportional to Mstar^1.8(+/-0.2), with a dispersion lower by a factor of about 2 than in previous studies. A number of properties indicate that the physical conditions of the accreting gas are similar over more than 5 orders of magnitude in Macc

    X-Shooter spectroscopy of young stellar objects: II. Impact of chromospheric emission on accretion rate estimates

    Full text link
    Context. The lack of knowledge of photospheric parameters and the level of chromospheric activity in young low-mass pre-main sequence stars introduces uncertainties when measuring mass accretion rates in accreting (Class II) Young Stellar Objects. A detailed investigation of the effect of chromospheric emission on the estimates of mass accretion rate in young low-mass stars is still missing. This can be undertaken using samples of young diskless (Class III) K and M-type stars. Aims. Our goal is to measure the chromospheric activity of Class III pre main sequence stars to determine its effect on the estimates of accretion luminosity (Lacc) and mass accretion rate (Macc) in young stellar objects with disks. Methods. Using VLT/X-Shooter spectra we have analyzed a sample of 24 non-accreting young stellar objects of spectral type between K5 and M9.5. We identify the main emission lines normally used as tracers of accretion in Class II objects, and we determine their fluxes in order to estimate the contribution of the chromospheric activity to the line luminosity. Results. We have used the relationships between line luminosity and accretion luminosity derived in the literature for Class II objects to evaluate the impact of chromospheric activity on the accretion rate measurements. We find that the typical chromospheric activity would bias the derived accretion luminosity by Lacc,noise< 10-3Lsun, with a strong dependence with the Teff of the objects. The noise on Macc depends on stellar mass and age, and the typical values of log(Macc,noise) range between -9.2 to -11.6Msun/yr. Conclusions. Values of Lacc< 10-3Lsun obtained in accreting low-mass pre main sequence stars through line luminosity should be treated with caution as the line emission may be dominated by the contribution of chromospheric activity.Comment: accepted for publication in Astronomy & Astrophysic

    X-Shooter spectroscopy of young stellar objects III. Photospheric and chromospheric properties of Class III objects

    Full text link
    We analyzed X-Shooter/VLT spectra of 24 ClassIII sources from three nearby star-forming regions (sigmaOrionis, LupusIII, and TWHya). We determined the effective temperature, surface gravity, rotational velocity, and radial velocity by comparing the observed spectra with synthetic BT-Settl model spectra. We investigated in detail the emission lines emerging from the stellar chromospheres and combined these data with archival X-ray data to allow for a comparison between chromospheric and coronal emissions. Both X-ray and Halpha luminosity as measured in terms of the bolometric luminosity are independent of the effective temperature for early-M stars but decline toward the end of the spectral M sequence. For the saturated early-M stars the average emission level is almost one dex higher for X-rays than for Halpha: log(L_x/L_bol) = -2.85 +- 0.36 vs. log(L_Halpha/L_bol) = -3.72 +- 0.21. When all chromospheric emission lines (including the Balmer series up to H11, CaII HK, the CaII infrared triplet, and several HeI lines) are summed up the coronal flux still dominates that of the chromosphere, typically by a factor 2-5. Flux-flux relations between activity diagnostics that probe different atmospheric layers (from the lower chromosphere to the corona) separate our sample of active pre-main sequence stars from the bulk of field M dwarfs studied in the literature. Flux ratios between individual optical emission lines show a smooth dependence on the effective temperature. The Balmer decrements can roughly be reproduced by an NLTE radiative transfer model devised for another young star of similar age. Future, more complete chromospheric model grids can be tested against this data set.Comment: accepted for publication in Astronomy & Astrophysic

    The chemical composition of nearby young associations: s-process element abundances in AB Doradus, Carina-Near, and Ursa Major

    Full text link
    Recently, several studies have shown that young, open clusters are characterised by a considerable over-abundance in their barium content. In particular, D'Orazi et al. (2009) reported that in some younger clusters [Ba/Fe] can reach values as high as ~0.6 dex. The work also identified the presence of an anti-correlation between [Ba/Fe] and cluster age. For clusters in the age range ~4.5 Gyr-500 Myr, this is best explained by assuming a higher contribution from low-mass asymptotic giant branch stars to the Galactic chemical enrichment. The purpose of this work is to investigate the ubiquity of the barium over-abundance in young stellar clusters. We analysed high-resolution spectroscopic data, focusing on the s-process elemental abundance for three nearby young associations, i.e. AB Doradus, Carina-Near, and Ursa Major. The clusters have been chosen such that their age spread would complement the D'Orazi et al. (2009) study. We find that while the s-process elements Y, Zr, La, and Ce exhibit solar ratios in all three associations, Ba is over-abundant by ~0.2 dex. Current theoretical models can not reproduce this abundance pattern, thus we investigate whether this unusually large Ba content might be related to chromospheric effects. Although no correlation between [Ba/Fe] and several activity indicators seems to be present, we conclude that different effects could be at work which may (directly or indirectly) be related to the presence of hot stellar chromospheres.Comment: Accepted for publication in MNRA

    Rotation-disk connection for very low mass and substellar objects in the Orion Nebula Cluster

    Full text link
    Angular momentum loss requires magnetic interaction between the forming star and both the circumstellar disk and the magnetically driven outflows. In order to test these predictions many authors have investigated a rotation-disk connection in pre-main sequence objects with masses larger than about 0.4Msun. For brown dwarfs this connection was not investigated as yet because there are very few samples available. We aim to extend this investigation well down into the substellar regime for our large sample of BDs in the Orion Nebula Cluster, for which we have recently measured rotational periods. In order to investigate a rotation-disk correlation, we derived near-infrared (NIR) excesses for a sample of 732 periodic variables in the Orion Nebula Cluster with masses ranging between 1.5-0.02 Msun and whose IJHK colors are available. Circumstellar NIR excesses were derived from the Delta[I-K] index. We performed our analysis in three mass bins.We found a rotation-disk correlation in the high and intermediate mass regime, in which objects with NIR excess tend to rotate slower than objects without NIR excess. Interestingly, we found no correlation in the substellar regime. A tight correlation between the peak-to-peak (ptp) amplitude of the rotational modulation and the NIR excess was found however for all objects with available ptp values. We discuss possible scenarios which may explain the lack of rotation-disk connection in the substellar mass regime. One possible reason could be the strong dependence of the mass accretion rate on stellar mass in the investigated mass range.Comment: 12 pages, 7 figures, accepted for publication "Astronomy and Astrophysics

    The GAPS Programme with HARPS-N at TNG. III: The retrograde orbit of HAT-P-18b

    Full text link
    The measurement of the Rossiter-McLaughlin effect for transiting exoplanets places constraints on the orientation of the orbital axis with respect to the stellar spin axis, which can shed light on the mechanisms shaping the orbital configuration of planetary systems. Here we present the interesting case of the Saturn-mass planet HAT-P-18b, which orbits one of the coolest stars for which the Rossiter-McLaughlin effect has been measured so far. We acquired a spectroscopic time-series, spanning a full transit, with the HARPS-N spectrograph mounted at the TNG telescope. The very precise radial velocity measurements delivered by the HARPS-N pipeline were used to measure the Rossiter-McLaughlin effect. Complementary new photometric observations of another full transit were also analysed to obtain an independent determination of the star and planet parameters. We find that HAT-P-18b lies on a counter-rotating orbit, the sky-projected angle between the stellar spin axis and the planet orbital axis being lambda=132 +/- 15 deg. By joint modelling of the radial velocity and photometric data we obtain new determinations of the star (M_star = 0.770 +/- 0.027 M_Sun; R_star= 0.717 +/- 0.026 R_Sun; Vsin(I_star) = 1.58 +/- 0.18 km/s) and planet (M_pl = 0.196 +/- 0.008 M_J; R_pl = 0.947 +/- 0.044 R_J) parameters. Our spectra provide for the host star an effective temperature T_eff = 4870 +/- 50 K, a surface gravity of log(g_star) = 4.57 +/- 0.07 cm/s, and an iron abundance of [Fe/H] = 0.10 +/- 0.06. HAT-P-18b is one of the few planets known to transit a star with T_eff < 6250 K on a retrograde orbit. Objects such as HAT-P-18b (low planet mass and/or relatively long orbital period) most likely have a weak tidal coupling with their parent stars, therefore their orbits preserve any original misalignment. As such, they are ideal targets to study the causes of orbital evolution in cool main-sequence stars.Comment: 5 pages, 2 figure
    corecore